Mechanics of Materials

Chapter, 3
Torsion




3.1 Introduction

1 In many engineering applications, members are required to
carry torsional loads.

1 Consider the torsion of circular shafts. Because a circular
cross section 1s an efficient shape for resisting torsional loads.
Circular shafts are commonly used to transmit power 1n
rotating machinery.

1 Also discuss another important application — torsion of thin-
walled tubes..




3.1 Torsion of Circular Shafts
a. Simplifying assumptions

 During the deformation, the cross sections are not distorted in
any manner — they remain plane, and the radius » does not
change. In addition, the length L of the shaft remains constant.

Figure 3.1
Deformation of
a circular shaft
caused by the
torque T. The
Initially straight
line AB deforms
INnto a helix.




(] Based on these observations, we make the following
assumptions:

+ Circular cross sections remain plane (do not warp) and
perpendicular to the axis of the shaft.

+ Cross sections do not deform (there 1s no strain in the plane of
the cross section).

+ The distances between cross sections do not change (the axial
normal strain 1s zero).

U Each cross section rotates as a rigid entity about the axis of
the shaft. Although this conclusion 1s based on the observed
deformation of a cylindrical shaft carrying a constant internal
torque, we assume that the result remains valid even if the
diameter of the shaft or the internal torque varies along the
length of the shatft.




b. Compatibility

1 Because the cross sections are separated by an infinitesimal
distance, the difference in their rotations, denoted by the angle
d @ , 1s also infinitesimal.

 As the cross sections undergo the relative rotation d ¢ , CD
deforms 1nto the helix CD. By observing the distortion of the
shaded element, we recognize that the helix angle 7 is the shear
strain of the element.




From the geometry of Fig.3.2(a), we obtain DD =p d 0 =1 dx,

from which the shear strain 7 1is

_dd
7= P (3.1)
The quantity d 6 /dx 1s the angle of twist per unit length, where
6 1s expressed in radians. The corresponding shear stress,

illustrated in Fig. 3.2 (b), is determined from Hooke s law:

r:Gy:Gﬁp (3.2)
dx
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e S

" "~__ Figure 3.2 (a) Shear

i strain of a material
I element caused by

/ twisting of the shaft;
.~ (b) the corresponding
shear stress.
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U the shear stress varies linearly with the radial distance p from
the axial of the shaft. : =Gy = G% 0

1 The variation of the shear stress acting on the cross section is
illustrated in Fig. 3.3. The maximum shear stress, denoted by

T max » Occurs at the surface of the shatt.

(J Note that the above derivations assume neither a constant

internal torque nor a constant cross section along the length of
the shaft.
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\
T | ! \  Figure 3.3 Distribution of
“z shear stress along the
/ r radius of a circular shaft.




c. Equilibrium Figure 3.4
Calculating the

t - \  shear stress acting
containing a N
P~y ) . on the cross
differential element of | O ~ | section. Resultant

arca dA4 loaded at the \
radial distance p from - A
the axis of the shaft.

IS a couple equal
to the internal
torque T.

L The shear force acting on this area is dP = 7 dA = G (d 6 /dx)
p dA, directed perpendicular to the radius. Hence, the moment

(torque) of dP about the center 0 is p dP = G (d 8 /dx) p*dA.
Summing the contributions and equating the result to the
internal torque yields J- L, pdP =T, or

GCm P dA=T

2 BRI




Recognizing that 1s the polar moment of 1nertia of the cross-
sectional area, we can write this equation as G (d 6 /dx) J=T , or

dg T
dx GJ &)
The rotation of the cross section at the free end of the shaft, called
the angle of twist & , is obtained by integration:

6 = j do = j—dx (3.4a)

As in the case of a prismatic bar carrying a constant torque, then
reduces the torque-twist relationship

L (3.4b)
GJ

Note the similarity between Egs. (3.4) and the corresponding
L
formulas for axial deformation: 0 =L (P/EA)dxand & = PLAEA)




Notes on the Computation of angle of Twist

+ 1.In the U.S. Customary system, the consistent units are G [ psi |,
T[Ib-in],and L [in.],and J [ in*]; in the SI system, the
consistentunitsare G[Pa], T[N - m],L[m],and J [ m*].

+ 2.The unit of & in Egs. (3.4) is radians, regardless of which
system of unit 1s used in the computation.

+ 3.Represent torques as vectors using the right-hand rule, as
illustrated in Fig. 3.5. The same sign convention applies to the

angle of twist 6 .

TN

N T Figure 3.5 Sign
Conventions

for Torque T

"‘ . and angle of

N
= N twist T
Positive 7'or 6 Negative 7'or 0




d. Torsion formulas

d G (d O /dx)=T/J, which substitution into Eq. (3.2),r =Gy = G? p
gives the shear stress T acting at the distance p from the center

of the shaft, Torsion formulas :

_TIp
J

The maximum shear stress T, ., 1s found by replacing p by the
radius 7 of the shaft: T

Fmax =771 (3.5b)

4 (3.52)

[ Because Hook s law was used in the derivation of Egs. (3.2)-
(3.5), these formulas are valid if the shear stresses do not exceed
the proportional limit of the material shear. Furthermore, these
formulas are applicable only to circular shafts, either solid or

hollow. BEIDC




L The expressions for the polar moments of circular areas are :

| 2T 16T
Solid shaft : Tmax = RS (3.5¢)
Hollow shaft : r = 2y LGP (3.5d)
o 7z(R4 —r4) 7z(D4 —d4)

Equations (3.5¢) and (3.5d) are called the torsion formulas.
Hollow shaft

Solid shaft

e

«— ——> - —
- 1D, >
4 4
_nrt  nd _Topd 4 _ T4 A
=7 =32 =7 B =r) =55 (D7 -d)

Figure 3.6 Polar moments of inertia of circular areas.




e. Power transmission

1 Shafts are used to transmit power. The power ¢ transmitted by a
torque T rotating at the angular speed ® 1s given by  =7'®,
where ® 1s measured 1n radians per unit time.

[ If the shaft is rotating with a frequency of f revolutions per unit

time, then @ =2 77 f, which gives =T (2 7 f). Therefore, the
torque can be expressed as §

T =

2 f (3.6a)

 In SI units, ¢'in usually measured in watts (1.0 W=1.0 N « m/s)
and f in hertz (1.0 Hz = 1.0 rev/s); Eq. (3.6a) then determines

the torque 7in N * m.

U In U.S. Customary units with {'in /b * in./s and f in hertz,
Eq.(3.6a) calculates the torque 7' 1n /b * 1n.




1 Because power in U.S. Customary units is often expressed in
horsepower (1.0 hp = 550 /b « ft/s = 396x10° /b * in./min), a
convenient form of Eq.(3.6a) 1s

3 . .
T-iny = SWp) | 396x10°(1b-in./ min)
27f (rev/min) 1.0(hp)
which simplifies to

T(lb-in) = 63.0x10° — SUP)
f(rev/min) (3.6b)




f. Statically indeterminate problems

Draw the required free-body diagrams and write the
equations of equilibrium.

Derive the compatibility equations from the restrictions
imposed on the angles of twist.

Use the torque- twist relationships in Eqs.(3.4) to express
the angles of twist in the compatibility equations in terms of
the torques.

Solve the equations of equilibrium and compatibility for the
torques.




Sample Problem 3.1
A solid steel shaft in a rolling mill transmits 20 kW of power at 2
Hz. Determine the smallest safe diameter of the shaft if the shear

stress T , is not to exceed 40 MPa and the angle of twist € is
limited to 6 "in a length of 3 m. Use G = 83 GPa.

Solution
Applying Eq. (3.6a) to determine the torque:
3
7= 2N 1501 58 m
21f  27(2)

To satisfy the strength condition, we apply the torsion formula,
Eq. (3.5¢):
16T 16 (1591 .5
z-max:E z-maX = 3 4X106 - ( 3 )
J nd d
Which yields d = 58.7x10-> m = 58.7 mm.




Apply the torque-twist relationship, Eq. (3.4b), to determine the
diameter necessary to satisfy the requirement of rigidity
(remembering to convert & from degrees to radians):

TL ( T j 1591.5(3)
6=— 6| — | =
GJ 180 )  (83x10° fzd*/32)

From which we obtain d = 48.6x103 m = 48.6 mm.

To satisfy both strength and rigidity requirements, we must
choose the larger diameter-namely,

d = 58.7 mm. Answer




Sample problem 3.2

The shaft in Fig. (a) consists of a 3-in. -diameter aluminum segment
that is rigidly joined to a 2-in. -diameter steel segment. The ends of
the shaft are attached to rigid supports, Calculate the maximum
shear stress developed in each segment when the torque 7= 10 kip
in. is applied. Use G = 4x10° psi for aluminum and G = 12x10° psi
for steel.

Aluminum Steel
3-in. diameter 2 in. diameter

j 10 k1p in.
—
T % C—‘ )
!"‘ 6 ft #! 3 ft *J \

b) FBD

(a)

A

Solution

Equilibrium XM =0, (10x10°) —T, —T, =0 (a)

This problem is statically indeterminate.




Compatibility the two segments must have the same angle of twist;
thatis, 6 .= €, From Eq. (3.4b), this condition between.

(Ej :(Ej r,(3x12)  T,(6x12)
GJ ), \GJ ), (12x106)3£2(2)4 (4x10° )~ (3)"

32
from which
I,=1.1852 T, (b)
Solving Egs. (a) and (b), we obtain
T,,=4576 [b -+ in. T, =5424 [b - 1n.

the maximum shear stresses are

167 1614576 .
(rmax )a; = ( JrE jal = 75(3)3 ): 863 psi

16T 1615424 :
(Tmax )st :(72013 jst: ((2)3 ) — 3450pSl Answer
" [T <[>]p]

Answer




600 1b - ft

Sample problem 3.3

The four rigid gears, loaded
as shown 1n Fig. (a), are
attached to a 2-in.-diameter
steel shaft. Compute the
angle @ of rotation of gear
A relative to gear D. Use G

= 12x10° psi for the shatft. el

1000 1b - ft

(a)
1000 1b - ft 900 1b - ft 500 1b - ft

: T
Solution CD e
It 1s convenient to represent . B A
the torques as vectors (using Tpe 9001b-ft  5001b-ft
. e G- =l
the right-hand rule) on the B y
FBDs in Flg (b) Tos 500 1b - ft
N —i
A

(b) FBDs >[>]




Solution

Assume that the internal torques 7 ,,, Tp-, and T are positive
according to the sign convention introduced earlier ( positive torque
vectors point away from the cross section). Applying the
equilibrium condition > M = 0 to each FBD, we obtain

5()0—9()()—|—1000_TCD:0 Ton 1000 Ib - ft 900 Ib - ft 500 Ib - ft

500—900— Ty.= 0 T — —
500—7,,=0 Tfi—g Eb-ﬁ 5001&
T3 =500 Ib- ft, p y
Ty =-400 Ib- ft Ty _S000-f
A

T, =600 /- 1t
- (b) FBDs

The minus sign indicates that the sense of 7. 1s opposite to that
shown on the FBD.A 1s gear D were fixed. [a]<>]pl]




This rotation 1s obtained by summing the angles of twist of the three
segments:

O =0 45T Op,cT0cp

Using Eq.(3.4b), we obtain (converting the lengths to inches and
torques to pound-inches)
_Lyplyp 1 5clpe +1pLop

Oup = =T,
~ (500x12)(5%12)—(400x12)3x12)+(600x 12)(4x12)
B ()’ /32i12><10)6
=0.02827 rad = 1.620 Answer

The positive result indicates that the rotation vector of A4 relative to
D 1s 1n the positive x-direction: that is, 6 ,, is directed
counterclockwise when viewed from A4 toward D.




Sample Problem 3.4

Figure (a) shows a steel
shaft of length L =1.5m

and diameter d = 25 mm )
that carries a distributed ) A J~ \ \ \ ‘

£

B

yr £

k.
o
— 7
—_—
/\
_.-

toque of intensity ( torque
per unit length) ¢ = £,(x/L), =

where ¢, =200 N- m/m. (a)
Determine (1) the maximum j’ﬂ
. t dx
shear stress in the shaft; and r, A /0 B
(2) the angle of twist. Use G / )7,&
= 80 GPa for steel. L
(b) FBD

Figure (a) and (b) FBD
[a]<a[>]>]




i
A /j;) tdx B
/

Solution Ty .
j—x

L
Part 1 (b) FBD
Figure (b) shows the FBD of the shaft. The total torque applied
to the shaft 1s j Ot tdx . The maximum torque in the shaft is
T ,, which occurs at the fixed support. From the FBD we get
N M, =0 jOLtdx ~T,=0

L :%(200)(1.5):150N-m

L L X

T, =IO tdxzjo thdxz
From Eq. (3.5¢), the maximum stress in the shaft is
16T,  16(150)

™ md’ 7(0.025)

=48.9%x10° Pa = 48.9MPa Answer

T




Part 2

The torque 7 acting on a cross section located at the distance x
from the fixed end can be found from the FBD 1n Fig. (¢):

DMy =0 T+['tdx—-T, =0

. frdx
T:TA—thdx———j t g —dx Tf. ( é“ 3_»7/,‘
(Lz_x ) (c) FBD

2L
From Eq. (3.4a), the angle 6 of twist of the shaft is

L2
0 = lexz L _‘-L(Lz—x2 = L8
0 GJ 2LGJ Y0 3GJ

200(1.5)°
3(80x10° )z /32)(0.025)*

=0.0489%rad =2.8° Answer




3.3 Torsion of Thin-Walled
Tubes

 Simple approximate formulas
are available for thin-walled
tubes. Such members are
common in construction where
light weight 1s of paramount
importance.

d The tube to be prismatic ( Middle surface
constant cross section), but the (a)
wall thickness ¢ 1s allowed to
vary within the cross section. Figure 3.7 (a) Thin-walled
The surface that lies midway tube in torsion; (b) shear
between the inner and outer stress in the wall of the tube.

boundaries of the tube 1s called

the middle surface. [a[<]>]>1]




L If thickness ¢ 1s small compared to the overall dimensions of the
cross section, the shear stress 7 induced by torsion can be
shown to be almost constant through the wall thickness of the

tube and directed tangent to the middle surface, in Fig. (3.7b).
(] At this time, it is convenient to introduce the concept of shear

flow g, defined as the shear force per unit edge length of the

middle surface.

1 the shear flow ¢ is
q= Tt (3.7)

If the shear stress 1s not
constant through the wall
thickness, then 7 in Eq.
(3.7) should be viewed as Middle surface
the average shear stress. (@)




Uthe shear flow is COI/lSZaI./lf ds /'ﬁTﬂxﬁ“‘ﬂ dx
throughout the tube. This I—< 7 | w,,:“‘/*f g
result can be obtained by " - @ ~
considering equilibrium of S/ /%ﬂ X
the element shown in Fig. Y 1\ 5

dg 7 g +31 gy
3.7(c). q+3¢ ds S

In labeling the shear flows, ©)
we assume that g varies in
the longitudinal (x) as well
as the circumferential (s) Z F,=0 |q+ 99 ds |dx — gdx = 0
directions. The force acting

on each side of the element (
ZES’ =0 q—l—a—qu ds —qds =0

(c) Shear flows on wall element.

1s equal to the shear flow Ox

multiplied by. the. edge 0q/&x = 0q/ bs = 0,/thereby proving that
length, resulting in the the shear flow is constant throughout
equilibrium equations . the tube.




 The shear force is dP = gds. The moment of the force about an
arbitrary point 0 1s 7dP = (gds)r, where 1 1s the perpendicular
distance of 0 from the line of action of dP. The sum of these
moment must be equal to the applied torque 7; that is,

T = SES qrds (a)

Which the integral 1s taken over the closed curve formed by the
intersection of the middles surface and the cross section, called

the median line.
Figure 3.8 Calculating the

resultant of the shear
flow acting on the cross
section of the tube.

[ O
1] /
Median line /{‘\1\ ///,/;,/// Resultant of a couple
(length = 5) gy equal to the internal
Area = A \ torque T.




OBut from Fig. 3.8 we see that »
ds = 2dAo, where dAo 1s the

area of the shaded triangle.

Therefore, £ rds =24, | ,where Median Tine *’/‘T‘\I ;/
Ao 1s the area of the cross (length=5) N /
section that is enclosed by the Area = A, f—'\ﬁ_ - /
median line. "
T =$grds  T=24y (3.8a)
d from which the shear flow is q = ﬁ (3.8b)

1 Determining the work done by the shear
flow acting on the element in Fig. 3.7(c).

dU = —(force X dis tan ce) = —(qu )(ydx)

Flgure 3.9 Deformation of element caused by shear flow.




Substituting v =7 /G =g¢q/ Gt yields
2

dU - %(qu )(ydx) dU = 2th dsdx (b)

The work U of the shear flow for the entire tube is obtained by
integrating Eq. (b) over the middle surface of the tube. Noting that
q and G are constants and t is independent of x,

> ool od ’Led (c)
i i

st 2G % 1
Conservation of energy requires U to be equal to the work of the
applied torque that is, U = T 6 /2. After substituting the expression
for q from Eq. (3.8b) into Eq. (¢),

7 2
= T L {)dS:lTﬁ
24, 24, 2G s t 2
[&]<]>1n1]




The angle of twist of the tube is

_ TL {) ds
4GA; s t

If t is constant, we have i (ds/t)=S/t, where S is the length of
the median line Therefore, Eq. (3.9a) becomes

TLS
0 = —| ( constant ?) (3.9b)
4G4t

L If the tube is not cylindrical, its cross sections do not remain
plane but tend to warp. Tube with very thin walls can fail by
bucking which the stresses are still within their elastic ranges.
steel tubes of circular cross section require /¢ <50 to forestall
buckling due to torsion.

(3.92)

(J Shape re-entrant corners in the cross section of the tube should
also be avoided because they cause stress concentration. The
shear stress at the inside boundary of a corner can be
considerably higher than the average stress. [&]<]> ]




Sample Problem 3.5

A steel tube with the cross section shown carries a torque 7. The
tube 1s 6 ft long and has a constant wall thickness of 3/8 1n. (1)
Compute the torsional stiffness k£ = 77/ 6 of the tube. (2) If the tube is
twisted through 0.5, determine the shear stress in the wall of the
tube. Use G =12 x 106 psi. and neglect stress concentrations at the

COorners.

[«—— 6 in.——>

[ | I
| f
| |
{ |

{ |
¥y I
[ | !
I f

2 in—="\" [/ 5in.

1 1 .
8 . I | | |
\ \ [
i | I
1 I |
|| I
1 A |
1 | B
| | I 1

Te aims 3|
3.5 Figure (a)

Solution
Partl

Because the wall thickness 1s
constant, the angle of twist 1s given by
Eq. (3.9b): 9 — TLS

4GAt
Therefore, the torsional stiffness of
the tube can be computed from
T 4G4k
0 LS

K




The area enclosed by the median line 1s

A, = averagewit h x height = (ﬂj@) — 25ip.2
And the length of the median line 1s

S =6+4+2+1° +5% =20.20in.
Consequently, the torsional stiffness becomes

_ 4(12x10° (25)(3/8)

(6x12)(20.20)
=135.0 x 103 1b- in./deg Answer

=7.735%x10% Ib-in./ rad

Part 2
The toque required to produce an angle of twist of 0.5 is
T=k0=(135.0 x 10°)(0.5)=67.5 x 103 Ib- in.

. . T 67.5x10°
which results in the shear flow ¢ = = 13500/ in.
24,  2(25)
: : g 1350 :
The corresponding shear stress 1S 7 = - = —— =3600psi Answer

: 3/8
[a]<]>pi]




Sample Problem 3.6

An aluminum tube, 1.2 m long, has the

semicircular cross section shown 1n the ) mn /—(D
figure. If stress concentrations at the <
corners are neglected, determine (1) the ’\ %@@
torque that causes a maximum shear stress | ! IR T

of 40MPa.and (2) the corresponding angle } \

of twist of the tube. Use G = 28 GPa for 3 mm
aluminum.

Solution

the shear flow that causes a maximum shear stress of 40 MPa 1s
g= 7t=(40 x 109 (0.002)= 80 x 10° N/m

The cross-sectional area enclosed by the median line 1s

2 2
A, == 7(0.25)" _ 9817 x 10 m”

2 2 [a]<]>pi]




T =2A4,g=2(0.9817x107)80x10°)=157.07N - m

Part 2

The cross section consists of two parts, —, =~ (_®

labeled 1 and 2 in the figure, each \/v/ D N

having a constant thickness. 8 A & &‘@ \
ds S, S, i

_:_le‘” b= LD ¥@

where S, and S, are the lengths of parts 1 and 2, respectively.
§ds _ 2y _ 7z(25)Jr 2(25) _ 5504

t ot t, 2 3
and Eq. (3.9a) yields for the angle of twist
1L 157. :
oL V's _ 57.07(1.2) (55.94)
4GA; » t 4(28x10°)09817x107)

=0.0977rad =5.60° Answer
[&]<]>1n1]




