
Mechanics of Materials

Chapter 3
Torsion



3.1 Introduction
In many engineering applications, members are required to 
carry torsional loads. 

Consider the torsion of circular shafts. Because a circular 
cross section is an efficient shape for resisting torsional loads. 
Circular shafts are commonly used to transmit power in 
rotating machinery. 

Also discuss another important application－torsion of thin-
walled tubes.. 



3.1 Torsion of Circular Shafts 
a. Simplifying assumptions

During the deformation, the cross sections are not distorted in 
any manner－they remain plane, and the radius r does not 
change. In addition, the length L of the shaft remains constant. 

Figure 3.1  
Deformation of 
a circular shaft
caused by the 
torque T.  The 
initially straight 
line AB deforms 
into a helix. 



Based on these observations, we make the following 
assumptions:

٠ Circular cross sections remain plane (do not warp) and 
perpendicular to the axis of the shaft.

٠ Cross sections do not deform (there is no strain in the plane of 
the cross section).

٠ The distances between cross sections do not change (the axial 
normal strain is zero).
Each cross section rotates as a rigid entity about the axis of 
the shaft. Although this conclusion is based on the observed 
deformation of a cylindrical shaft carrying a constant internal 
torque, we assume that the result remains valid even if the 
diameter of the shaft or the internal torque varies along the 
length of the shaft. 



b.   Compatibility
Because the cross sections are separated by an infinitesimal 
distance, the difference in their rotations, denoted by the angle 
dθ, is also infinitesimal. 
As the cross sections undergo the relative rotation dθ, CD
deforms into the helix CD. By observing the distortion of the 
shaded element, we recognize that the helix angle γis the shear 
strain of the element. 
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From the geometry of Fig.3.2(a), we obtain  DD´= ρ dθ=γdx , 
from which the shear strain γ is        

(3.1)

The quantity dθ/dx is the angle of twist per unit length, where 
θ is expressed in radians. The corresponding shear stress, 
illustrated in Fig. 3.2 (b), is determined from Hooke´s law:

(3.2)
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Figure 3.2  (a) Shear 
strain of a material 
element caused by 
twisting of the shaft; 
(b) the corresponding 
shear stress.
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the shear stress varies linearly with the radial distance ρ from 
the axial of the shaft.

The variation of the shear stress acting on the cross section is
illustrated in Fig. 3.3. The maximum shear stress, denoted by 
τmax , occurs at the surface of the shaft.

Note that the above derivations assume neither a constant 
internal torque nor a constant cross section along the length of 
the shaft.

Figure 3.3  Distribution of 
shear stress along the 
radius of a circular shaft.
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The shear force acting on this area is dP = τdA = G (dθ/dx)
ρ dA, directed perpendicular to the radius. Hence, the moment 
(torque) of dP about the center o is ρ dP = G (dθ/dx) ρ 2dA. 
Summing the contributions and equating the result to the 
internal torque yields                     or

c. Equilibrium
Fig. 3.4 shows a cross 
section of the shaft 
containing a 
differential element of 
area dA loaded at the 
radial distance ρ from 
the axis of the shaft. 

Figure 3.4  
Calculating the 
Resultant of the 
shear stress acting 
on the cross 
section.  Resultant 
is a couple equal 
to the internal 
torque T.
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Recognizing that  is the polar moment of inertia of the cross-
sectional area, we can write this equation as G (dθ/dx) J = T , or 

(3.3)

The rotation of the cross section at the free end of the shaft, called 
the angle of twist θ , is obtained by integration:

(3.4a)

As in the case of a prismatic bar carrying a constant torque, then 
reduces the torque-twist relationship

(3.4b)

Note the similarity between Eqs. (3.4) and the corresponding 

formulas for axial deformation:                          and  δ = PL/(EA)
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Notes on the Computation of angle of Twist
٠ 1.In the U.S. Customary system, the consistent units are G [ psi ], 

T [ lb．in ] , and L [ in.], and  J  [ in.4 ]; in the SI system, the 
consistent units are G [ Pa ], T [ N．m ], L [ m ], and J [ m4 ]. 

٠ 2.The unit of θin Eqs. (3.4) is radians, regardless of which 
system of unit is used in the computation.

٠ 3.Represent torques as vectors using the right-hand rule, as 
illustrated in Fig. 3.5. The same sign convention applies to the
angle of twistθ.

Figure 3.5  Sign 
Conventions 
for Torque T
and angle of 
twist Τ.



d.    Torsion formulas

G (dθ/dx) = T/J , which substitution into Eq. (3.2),                           

gives the shear stress τ acting at the distance ρ from the center 

of the shaft, Torsion formulas :

(3.5a)

The maximum shear stress τmax is found by replacing ρ by the 
radius r of the shaft: 

(3.5b)

Because Hook´s law was used in the derivation of Eqs. (3.2)-
(3.5), these formulas are valid if the shear stresses do not exceed
the proportional limit of the material shear. Furthermore, these 
formulas are applicable only to circular shafts, either solid or 
hollow.
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The expressions for the polar moments of circular areas are :

Solid shaft :                                          (3.5c)

Hollow shaft :                                         (3.5d) 

Equations (3.5c) and (3.5d) are called the torsion formulas.
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Figure 3.6    Polar moments of  inertia of circular areas.



e. Power transmission
Shafts are used to transmit power. The power ζ transmitted by a 
torque T rotating at the angular speed ω is given by ζ =T ω, 

where ω is measured in radians per unit time. 

If the shaft is rotating with a frequency of f  revolutions per unit 
time, then ω = 2π f , which gives ζ = T (2π f ). Therefore, the 
torque can be expressed as

(3.6a)

In SI units, ζ in usually measured in watts (1.0 W=1.0 N‧m/s) 
and f in hertz (1.0 Hz = 1.0 rev/s); Eq. (3.6a) then determines 
the torque T in N‧m. 

In U.S. Customary units with ζ in lb‧in./s and f in hertz, 
Eq.(3.6a) calculates the torque T in lb‧in. 
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Because power in U.S. Customary units is often expressed in 
horsepower (1.0 hp = 550 lb•ft/s = 396×103 lb•in./min), a 
convenient form of Eq.(3.6a) is

which simplifies to

(3.6b)
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f. Statically indeterminate problems
• Draw the required free-body diagrams and write the 

equations of equilibrium. 

• Derive the compatibility equations from the restrictions 
imposed on the angles of twist.

• Use the torque- twist relationships in Eqs.(3.4) to express 
the angles of twist in the compatibility equations in terms of 
the torques.

• Solve the equations of equilibrium and compatibility for the 
torques.



Sample Problem 3.1
A solid steel shaft in a rolling mill transmits 20 kW of power at 2 
Hz. Determine the smallest safe diameter of the shaft if the shear 
stress τw is not to exceed 40 MPa and the angle of twist θ is 
limited to 6°in a length of 3 m. Use G = 83 GPa. 
Solution
Applying Eq. (3.6a) to determine the torque:

To satisfy the strength condition, we apply the torsion formula, 
Eq. (3.5c):

Which yields d = 58.7×10-3 m = 58.7 mm.        
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Apply the torque-twist relationship, Eq. (3.4b), to determine the 
diameter necessary to satisfy the requirement of rigidity 
(remembering to convert θfrom degrees to radians):

From which we obtain d = 48.6×10-3 m = 48.6 mm.

To satisfy both strength and rigidity requirements, we must 
choose the larger diameter-namely,

d = 58.7 mm.                                                  Answer 
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Sample problem 3.2
The shaft in Fig. (a) consists of a 3-in. -diameter aluminum segment 
that is rigidly joined to a 2-in. -diameter steel segment. The ends of 
the shaft are attached to rigid supports, Calculate the maximum 
shear stress developed in each segment when the torque T = 10 kip 
in. is applied. Use G = 4×106  psi for aluminum and G = 12×106 psi
for steel.

Solution 

Equilibrium ΣMx = 0 ,    ( 10 × 103 ) －Tst －Tal =0         (a)
This problem is statically indeterminate.  



Compatibility the two segments must have the same angle of twist; 
that is, θst = θal From Eq. (3.4b), this condition between. 

from which
Tst = 1.1852  Tal (b)

Solving Eqs. (a) and (b), we obtain 
Tal = 4576  lb‧ in.             Tst = 5424  lb‧ in. 

the maximum shear stresses are
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Answer

alst GJ
TL

GJ
TL

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

( ) ( )
( )

psi
d
T

al
al 863

3
45761616

33max ==⎟
⎠
⎞

⎜
⎝
⎛=

ππ
τ

( ) ( )
( )

psi
d
T

stst 3450
2

54241616
33max ==⎟

⎠
⎞

⎜
⎝
⎛=

ππ
τ

( )
( ) ( )

( )
( ) ( )4646 3

32
104

126

2
32

1012

123
ππ

×

×
=

×

× alst TT



Sample problem 3.3
The four rigid gears, loaded 
as shown in Fig. (a), are 
attached to a 2-in.-diameter 
steel shaft. Compute the 
angle θ of rotation of gear
A relative to gear D. Use G
= 12×106  psi for the shaft. 

Solution
It is convenient to represent 
the torques as vectors (using 
the right-hand rule) on the 
FBDs in Fig. (b). 



Solution
Assume that the internal torques TAB, TBC, and TCD are positive
according to the sign convention introduced earlier ( positive torque 
vectors point away from the cross section). Applying the 
equilibrium condition ΣMx = 0 to each FBD, we obtain 

500－900＋1000－TCD = 0

500－900－TBC = 0

500－TAB = 0

TAB =500 lb· ft , 

TBC =-400 lb· ft

TCD = 600 lb· ft

The minus sign indicates that the sense of TBC is opposite to that 
shown on the FBD.A is gear D were fixed. 



This rotation is obtained by summing the angles of twist of the three 
segments: 

θA/D =θA/B＋θB /C＋θC/D

Using Eq.(3.4b), we obtain (converting the lengths to inches and
torques to pound-inches) 

= 0.02827 rad = 1.620° Answer

The positive result indicates that the rotation vector of A relative to 
D is in the positive x-direction: that is, θAD is directed 
counterclockwise when viewed from A toward D.
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Sample Problem 3.4
Figure (a) shows a steel 
shaft of length L = 1.5 m 
and diameter d = 25 mm 
that carries a distributed 
toque of intensity ( torque 
per unit length) t = tB(x/L), 
where tB = 200 N· m/m. 
Determine (1) the maximum 
shear stress in the shaft; and 
(2) the angle of twist. Use G
= 80 GPa for steel.

Figure (a) and  (b) FBD



Solution

Part 1

Figure (b) shows the FBD of the shaft. The total torque applied 

to the shaft is                     . The maximum torque in the shaft is 

TA, which occurs at the fixed support. From the FBD we get 

From Eq. (3.5c), the maximum stress in the shaft is 
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Part 2

The torque T acting on a cross section located at the distance x
from the fixed end can be found from the FBD in Fig. (c): 

From Eq. (3.4a), the angle θ of twist of the shaft is 

=                                                         Answer
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3.3 Torsion of Thin-Walled  
Tubes
Simple approximate formulas 
are available for thin-walled 
tubes. Such members are 
common in construction where 
light weight is of paramount 
importance. 
The tube to be prismatic ( 
constant cross section), but the 
wall thickness t is allowed to 
vary within the cross section. 
The surface that lies midway
between the inner and outer 
boundaries of the tube is called 
the middle surface.

Figure  3.7  (a) Thin-walled 
tube in torsion; (b) shear 
stress in the wall of the tube. 



If thickness t is small compared to the overall dimensions of the 
cross section, the shear stressτinduced by torsion can be 
shown to be almost constant through the wall thickness of the 
tube and directed tangent to the middle surface, in Fig. (3.7b).
At this time, it is convenient to introduce the concept of shear 
flow q, defined as the shear force per unit edge length of the 
middle surface.

the shear flow  q is 

q = τt               (3.7)

If the shear stress is not 
constant through the wall 
thickness, then τin Eq. 
(3.7) should be viewed as 
the average shear stress.



(c)  Shear flows on wall element.

the shear flow is constant
throughout the tube. This 
result can be obtained by 
considering equilibrium of 
the element shown in Fig. 
3.7(c). 
In labeling the shear flows, 
we assume that q varies in 
the longitudinal (x) as well 
as the circumferential (s) 
directions. The force acting 
on each side of the element 
is equal to the shear flow 
multiplied by the edge 
length, resulting in the 
equilibrium equations .
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the tube. 
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The shear force is dP = qds. The moment of the force about an 
arbitrary point 0 is rdP = (qds)r, where r is the perpendicular 
distance of 0 from the line of action of dP. The sum of these 
moment must be equal to the applied torque T; that is,

(a)

Which the integral is taken over the closed curve formed by the 
intersection of the middles surface and the cross section, called 
the median line. 

Figure 3.8  Calculating the 
resultant of the shear 
flow acting on the cross 
section of the tube. 
Resultant of a couple 
equal to the internal 
torque T.
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But from Fig. 3.8 we see that r 
ds = 2dAo, where dAo is the 
area of the shaded triangle. 
Therefore,                     ,where 
Ao is the area of the cross 
section that is enclosed by the 
median line.

T = 2 A0q                            (3.8a)

from which the shear flow is                                    (3.8b)
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Determining the work done by the shear 
flow acting on the element in Fig. 3.7(c). 

Figure 3.9  Deformation of element caused by shear flow.
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Substituting γ=τ/G = q / Gt yields 

（b）

The work U of the shear flow for the entire tube is obtained by 
integrating Eq. (b) over the middle surface of the tube. Noting that 
q and G are constants and t is independent of x, 

（c）

Conservation of energy requires U to be equal to the work of the 
applied torque that is, U = Tθ/2. After substituting the expression 
for q from Eq. (3.8b) into Eq. (c), 
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The angle of twist of the tube is 

(3.9a)

If t is constant, we have                        where S is the length of 
the median line Therefore, Eq. (3.9a) becomes  

( constant t)                 (3.9b)

If the tube is not cylindrical, its cross sections do not remain 
plane but tend to warp. Tube with very thin walls can fail by
bucking which the stresses are still within their elastic ranges. 
steel tubes of circular cross section require r/t ＜50 to forestall 
buckling due to torsion.
Shape re-entrant corners in the cross section of the tube should 
also be avoided because they cause stress concentration. The 
shear stress at the inside boundary of a corner can be 
considerably higher than the average stress.
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3.5  Figure (a)

Sample Problem 3.5
A steel tube with the cross section shown carries a torque T. The 
tube is 6 ft long and has a constant wall thickness of 3/8 in. (1) 
Compute the torsional stiffness k = T/θof the tube. (2) If the tube is 
twisted through 0.5°, determine the shear stress in the wall of the 
tube. Use G =12 × 106 psi. and neglect stress concentrations at the 
corners. Solution 

Part1
Because the wall thickness is 
constant, the angle of twist is given by 
Eq. (3.9b):

Therefore, the torsional stiffness of 
the tube can be computed from
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The area enclosed by the median line is 

And the length of the median line is 

Consequently, the torsional stiffness becomes

= 135.0 × 103 lb· in./deg                                     Answer
Part 2
The toque required to produce an angle of twist of 0.5° is 

T = kθ= (135.0 × 103)(0.5) = 67.5 × 103  lb· in. 

which results in the shear flow 

The corresponding shear stress is                               Answer
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Sample Problem 3.6
An aluminum tube, 1.2 m long, has the 
semicircular cross section shown in the 
figure. If stress concentrations at the 
corners are neglected, determine (1) the 
torque that causes a maximum shear stress 
of 40MPa.and (2) the corresponding angle 
of twist of the tube. Use G = 28 GPa for 
aluminum.

Solution
the shear flow that causes a maximum shear stress of 40 MPa is 

q = τt = (40 × 106) (0.002)= 80 × 103 N/m 
The cross-sectional area enclosed by the median line is 
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Part 2

where S1 and S2 are the lengths of parts 1 and 2, respectively.  

and Eq. (3.9a) yields for the angle of twist 

Answer 
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The cross section consists of two parts, 
labeled 1 and 2 in the figure, each 
having a constant thickness. 


