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We study theoretically and experimentally the properties of waveguides induced by one-dimensional steady-
state photorefractive screening solitons. We show that the number of possible guided modes in a waveguide
induced by a bright soliton depends on the intensity ratio of the soliton, which is the ratio between the soliton
peak intensity and the sum of the background illumination and the dark irradiance. We find that the number
of guided modes increases monotonically with increasing intensity ratio. By adjusting the intensity ratio and
the applied field, one can keep a fixed soliton size and at the same time vary the number of guided modes
continuously. On the other hand, waveguides induced by dark screening solitons can support only one guided
mode for all intensity ratios. Our experiments show good agreement with the theoretical results for both
bright- and dark-soliton-induced waveguides. © 1997 Optical Society of America [S0740-3224(97)00412-8]
1. INTRODUCTION

Photorefractive spatial solitons have attracted substan-
tial research interest since their existence was predicted1

and observed2 a few years ago. Three types of photore-
fractive bright and dark solitons have been discovered
thus far, including quasi-steady-state solitons,1,2 photo-
voltaic solitons,3,4 and screening solitons.5–8 They all
rely on a change in the refractive index driven by space-
charge fields (via the electro-optic effect) to balance dif-
fraction. The quasi-steady-state solitons exist in bright2

and dark9 forms and in one and two transverse dimen-
sions when an externally applied electric field is slowly
being screened. Photovoltaic solitons occur in photore-
fractive materials with a strong photovoltaic current (e.g.,
LiNbO3). Thus far, only dark photovoltaic solitons have
been observed, including both one-4 and two-dimensional
solitons (with the latter referred to as vortex solitons10).
Screening solitons exist in a photorefractive material
when an externally applied field is nonuniformly screened
at steady state. Screening solitons have been thus far re-
ported in one-11 and two-dimensional7 bright and one-
dimensional dark12 realizations.

In general, the properties of photorefractive spatial
solitons greatly differ from those of Kerr-type solitons in
three aspects: (1) Photorefractive spatial solitons are
stable when trapped in either one or two transverse di-
mensions. (2) The required optical power for formation
of photorefractive solitons is very low (as low as 1 mW,
compared with 100 kW for optical Kerr solitons). (3)
Since the response of photorefractive media is wavelength
dependent, one can generate a soliton with a very weak
0740-3224/97/113091-11$10.00 ©
beam and guide within it a much more intense beam of a
wavelength at which the material is less photosensitive.13

This enables the steering and controlling of intense
beams by use of weak (soliton) beams. Therefore photo-
refractive spatial solitons seem very promising for various
applications, such as all-optical control of beam steering
and optical wiring, near-field multichannel interconnects,
and frequency conversion in soliton-induced waveguides
(see discussion on potential applications in Ref. 14).
Some preliminary experiments, such as soliton
waveguiding13,15 and coherent or incoherent soliton colli-
sions of either one- or two-dimensional bright solitons,
have been demonstrated very recently.16–19 However,
the theory of the core idea, that is, waveguides being in-
duced by photorefractive solitons, has not been fully in-
vestigated yet.

In this paper, we analyze the properties of waveguides
induced by one-dimensional steady-state photorefractive
screening solitons. We show that the number of possible
guided modes in a waveguide induced by a bright soliton
depends on the intensity ratio of the soliton, which is the
ratio between the soliton peak intensity and the sum of
the background illumination and dark irradiance. We
find that the number of guided modes increases monotoni-
cally with increasing intensity ratio starting from a single
mode. When the intensity ratio is much smaller than
unity (defined as the Kerr limit14), the waveguide can
support only one mode for guided beams of wavelengths
equal to or longer than that of the soliton. On the other
hand, waveguides induced by dark screening solitons can
support only a single guided mode for all intensity ratios.
Our experiments show good agreement with the theoret-
1997 Optical Society of America
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ical results for both bright- and dark-soliton-induced
waveguides.

2. WAVEGUIDES INDUCED BY BRIGHT
AND DARK SOLITONS
We follow the steps of a previous paper14 on one-
dimensional photorefractive screening solitons to derive
bright and dark soliton solutions. We start from the
standard set of rate and continuity equations and Gauss’
law, which describes the photorefractive effect with elec-
trons being the sole charge carriers, plus the wave equa-
tion for the slowly varying amplitude of the optical field:
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where Dn(Ê) 5 2(1/2)nb
3reff Ê is the electro-optic

change in the refractive index, and the independent vari-
ables are z, the longitudinal coordinate (propagation
axis), and x, the transverse coordinate. The five depen-
dent variables are n̂, the electron number density; Nd

i ,
the number density of ionized donors; Ĵ, the current den-
sity; Ê, the space-charge field inside the crystal; and A,
the slowly varying amplitude of the optical field, de-
fined by Eopt(x, z, t) 5 A(x, z)exp(ikz 2 ivt) 1 c.c. (k
5 2pnb /l, and v is the optical frequency). Relevant
constants of the crystal are Nd , the total donor number
density; NA , the number density of negatively charged
acceptors that compensate for the ionized donors; b, the
dark generation rate; s, the photoionization cross sec-
tion; g, the recombination rate coefficient; m, the electron
mobility; «s , the low-frequency dielectric constant; reff ,
the effective electro-optic coefficient; V, the external volt-
age applied to the crystal between electrodes separated by
distance l; 2q, the charge on the electron; kB , Boltz-
mann’s constant; and T, the absolute temperature. We
also define the optical, background, and dark irradiances
as I(x)5 uA(x, z)u2, Ib , and Idark 5 b/s, respectively.
Typically, Idark is very small as compared to Ib of 1
mW/cm2 (or larger) in most photorefractive materials.
We seek soliton solutions of the form

A~x, z ! 5 u~x !exp~iGz !~Idark 1 Ib!1/2, (6)

where G is defined as the soliton propagation constant
and u(x) is the normalized amplitude. We transform the
equations to dimensionless form by the substitutions n
5 n̂/Nd , r 5 Nd /NA , N 5 Nd

i /Nd , E 5 Ê/(V/l), J
5 uĴu/(qmNdV/l), and j 5 x/d, where d 5 (62kb)21/2

is the characteristic length scale for the soliton, and b
5 (k/nb)@(1/2)nb

3reffV/l# [ (k/nb)Dn0 is the parameter
that characterizes the strength and the sign of the optical
nonlinearity @Dn0 is the net change in the refractive in-
dex in the dark, i.e., I(x) 5 0, for all x]. In the low-
intensity regime, that is, under the condition 4ar(u2

1 1) ! 1/r! 1,14 where a 5 s(Idark 1 Ib)/(gNd), the
nonlinear differential equation, derived with perturbative
methods for the normalized soliton amplitude, is
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The upper (lower) sign represents the bright (dark) soli-
ton with h 5 1 @h 5 (1 1 u`

2)# and d [ G/b 5 ln(u0
2

1 1)/u0
2 (d [ G/b 5 1). The boundary conditions for a

bright soliton are (i) u(`) 5 u8(`) 5 u9(`) 5 0, (ii)
u8(0) 5 0, and (iii) u9(0)/u(0) , 0, while the boundary
conditions for a dark soliton are (i) u(`) 5 u` , (ii) u8(`)
5 u9(`) 5 0, (iii) u(0) 5 0, and (iv) a real u8(0). The
space-charge field,

E 5 2h/~u2 1 1 !, (8)

is present in the photorefractive material after the
steady-state screening soliton has formed. It gives rise
to a change in the refractive index, Dn̄(x) 5 Dn0 /(1
1 u2).

Consider now a probe beam propagating in this soliton-
induced (graded-index) waveguide and with an optical
electric field, Ēopt(x, z, t) 5 v(x)exp(ib̄z 2 iv̄t) 1 c.c.
(v̄ is the frequency of the probe beam, and b̄ is the propa-
gation constant). The wave equation for the slowly vary-
ing amplitude v(x) is

d2v

dx2
1 @ k̄0

2n̄2~x ! 2 b̄2#v 5 0, (9)

with the refractive index,

n̄~x ! 5 n̄b 1 Dn̄~x ! 5 n̄b 2
1
2

n̄b
3r̄eff Ê~x !, (10)

and the wave vector in vacuum, k̄0 5 2p/l̄ 5 v̄/c. The
values of unperturbed refractive index n̄b and the electro-
optic coefficient r̄eff are now at the new frequency v̄.
Note that both n̄b and r̄eff are polarization dependent.

A. Waveguides Induced by Bright Solitons
To generate a bright screening soliton, Dn has to be nega-
tive, as does (V/l).14 Using the electric field that sup-
ports the solitons [from Eq. (8)] and the normalization
E 5 Ê/(V/l), we obtain the refractive index

n̄~x ! 5 n̄b 1
1
2

n̄b
3r̄eff

V
l

1
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. (11)

Typically, for a spatial soliton, uDn0 /nbu < 1023; thus
ub/ku 5 uDn0 /nbu ! 1, and we can rewrite Eq. (9) as
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is the normalized propagation constant, and j̄ 5 a1a2j
is the new normalized length with two normalization
factors,

a1 5
l

l̄

n̄b

nb

, (14)

a2 5
n̄b

nb
Ar̄eff

reff

. (15)

Solving Eq. (12) gives the guided modes of the waveguide
induced by a bright screening soliton. Notice that if a1
5 a2 5 1, that is, if the probe beam is of the same polar-
ization and of the same wavelength as the soliton beam,
one of the eigenfunctions of Eq. (12) is identical to u(j)
with the eigenvalue d̄ 5 d 5 G/b [or b̄ 5 k 1 G since uGu
! k; one can see this directly by comparing Eq. (12) with
Eq. (7), when bright solitons are applied, i.e., h 5 1, and
the upper sign is chosen]. In other words, the soliton is a
guided mode of the waveguide it induces. Since the am-
plitude of the bright soliton, u(j), never crosses the zero
point, the soliton is indeed the first (fundamental) guided
mode of its own induced waveguide. This principle is
generally true for all bright spatial solitons.20,21

We now wish to find the guided modes, v( j̄), in a wave-
guide induced by the soliton u(j). First, we solve Eq. (7)
numerically for various values of u0 and find the soliton

Fig. 1. Amplitude profiles of the bright screening soliton u(j)
(dashed curves) and of the highest guided mode @v1(j), solid
curves for a1 5 a2 5 1; v2(j), dotted curves for a1a2 5 0.697]
of the soliton-induced waveguide at (a) u0 5 0.1, (b) u0 5 1, and
(c) u0 5 10. u(j) is normalized to u0 and v1(j), v2(j) to the
maximum of v1(j) and v2(j), respectively. At u0 5 10, there
are six guided modes for a1 5 a2 5 1 and four modes for a1a2
5 0.697.
wave forms u(j). Several particular cases are shown by
the dashed curves in Fig. 1, where we plot the normalized
amplitude u(j)/u(0). Because u(j) does not have a
closed-form solution, we use a numerical shooting method
to solve Eq. (12) for v( j̄) and then transfer it back to v(j),
so that both u(j)and v(j) can be shown on the same plot.
In real space, the propagation constant of a guided mode,
b̄, should lie between the maximum and the minimum
values of the refractive index n̄(x) times k̄0 (as in any di-
electric waveguide). Therefore, in Eqs. (12) and (13), the
eigenvalue, d̄, must be in the range between 1/(1 1 u0

2)
and unity to obtain a bound eigenfunction v( j̄). By re-
petitively guessing d̄ in that range, integrating Eq. (12)
numerically, and looking for a bound solution, v(6`)
Þ 6`, we are able to calculate all the bound eigenfunc-
tions. Figure 1(a) shows that when a1 5 a2 5 1 (and
thus j̄ 5 j), the second guided mode (solid curve, v1) of
the soliton-induced waveguide at u0 5 0.1 is roughly at
the cutoff, i.e., v(j → 6`) Þ 0 with v8(j → 6`)
5 v9(j → 6`) 5 0. We find that for all u0 , 0.02 the
induced waveguide is single mode for a1 5 a2 5 1. On
the other hand, for u0 5 1, there are two guided modes
[Fig. 1(b): the first mode coincides with u(j), and the
second, v1 , is shown by the solid curve] and for u0 5 10
there are six guided modes [Fig. 1(c): only the sixth
mode is shown here as the solid curve, v1]. In Fig. 2, we
show the normalized propagation constants of the guided
modes as functions of u0 in the range 0 < u0 < 20. The
number of guided modes at each u0 is given by the num-
ber of intersections of the dashed vertical lines with the
curves of the propagation constant in Fig. 2. The three
dashed lines correspond to u0 5 0.1, 1, and 10 (the ex-
amples given in Fig. 1). Notice that the number of
guided modes increases monotonically with increasing
u0 . Similar results are obtained when the same ap-
proach is used for different values of a1 and a2 . Figure 3
shows the number of guided modes and the propagation
constants as a function of u0 when a1a2 5 0.697, which
corresponds to a bright soliton at a 488-nm wavelength in
a SBN:60 crystal with reff 5 307 pm/V and guided within
it a probe beam at a 633-nm wavelength with r̄eff 5 250
pm/V (assuming negligible difference between nb and n̄b).
The dashed lines now indicate the number of guided
modes at u0 5 (2)1/2, 2, 4, and 7. Obviously, in this case,
the number of guided modes at any given u0 is smaller
than that for a1 5 a2 5 1 for u0 . 1, and the spacing be-
tween adjacent modes is also wider.22 In Fig. 1, we also
show the normalized profiles (dotted curves, v2) of the
corresponding highest-order guided modes, v2 /v2,max , for
a1a2 5 0.697. Note that since, in this case, the guided
beam is at a longer wavelength, the highest guided mode
is of a lower order whenever the induced waveguide is
multimode [Figs. 1(b) and 1(c)]. Also, the confinement of
any guided mode is smaller than that of the same mode
for a1 5 a2 5 1 (when the soliton and guided beam are of
the same wavelength).

Intuitively, the monotonic increase in the number of
guided modes as a function of u0 , shown in Figs. 2 and 3,
can be easily understood from waveguide theory. As
shown in Ref. 14, the refractive-index change Dn(x) is
generated (via the Pockels effect) by the electric space-
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charge field Ê, with Dn(x) } 2uEscu } 2@u2(x) 1 1#21.
At position x 5 6d/2, where u2(x 5 6d/2) 5 u0

2/(u0
2

1 2), Ê and Dn(x) attain half their maximum values.
The separation between these two points, d, is the
FWHM of the soliton-induced waveguide. Figure 4 illus-
trates the soliton-induced waveguides for two particular
values of u0

2 5 4 and u0
2 5 20 at a given actual dimen-

sional soliton size. As is clearly apparent from this fig-
ure, the higher the intensity ratio u0

2, the larger is d,
and the more similar is the soliton-induced index change
to that of a step-index waveguide. Photorefractive
screening solitons are characterized by an existence curve
that relates the soliton width Dj to intensity ratio u0

2 (see
Fig. 3 of Ref. 14). The variable Dj 5 Dxknb(reff uV/lu)1/2

5 (Dx2p/l)(2nbuDn0u)1/2 is the dimensionless soliton
FWHM, where Dx is the actual dimensional soliton
FWHM. Dj reaches a minimum roughly at intensity ra-
tio 3. For u0

2 . 3, one has to increase uV/lu to keep Dx
constant with increasing u0

2. This increases the maxi-

Fig. 2. Propagation constants of the guided modes of the wave-
guide induced by a bright screening solitons when a1 5 a2 5 1
(same l and polarization). The dashed lines correspond to (a)
u0 5 0.1, (b) u0 5 1, and (c) u0 5 10 of Fig. 1, at which the
soliton-induced waveguides have one, two, and six guided modes,
respectively.

Fig. 3. Propagation constants of the guided modes of the wave-
guide induced by the bright screening solitons when a1a2
5 0.697. The dashed lines at u0 5 (2)1/2, 2, 4, and 7 corre-
spond to the experiments described in Section 3.
mum change to the refractive index uDn0u, making the
soliton-induced waveguide deeper (Fig. 4). The net effect
of increasing u0

2 for a fixed soliton size Dx is a both wider
and deeper waveguide. This in turn implies that the in-
duced waveguide has a larger critical guiding angle and
can guide more modes as u0

2 increases. A similar behav-
ior was predicted for solitons in general saturable nonlin-
ear media.23 On the other hand, for u0

2 ! 1 (the low-
intensity-ratio regime), Eq. (7) simplifies to

u9 5 S u0
2

2
2 u2D u, (16)

which has the solution u(j) 5 u0 sech(u0j/2), of the
same form of a bright optical Kerr soliton.14 Similar to a
Kerr soliton, the bright screening soliton in this regime
will induce only single-mode waveguides. In the region
0.01 & u0

2 , 3, the induced waveguide reaches its mini-
mal width and starts to guide the second mode.

B. Waveguides Induced by Dark Solitons
To generate a dark soliton, Dn needs to be positive, as
does V/l.14 Using Eq. (8) and the normalization E
5 Ê/(V/l), we obtain the refractive index

n̄~x ! 5 n̄b 1 Dn̄~x ! 5 n̄b 1
1
2

n̄b
3r̄eff

V
l

u`
2 1 1

u2~x ! 1 1
.

(17)

Using the same normalized propagation constant d̄ and
normalization factors a1 and a2 as in Eqs. (13)–(15), we
rewrite Eq. (9) as

d2v

dj̄2
5 F d̄ 2

u`
2 1 1

u2~ j̄/a1a2! 1 1
Gv. (18)

When a1 5 a2 5 1, Eq. (18) becomes

d2v

dj2
5 F b̄2 2 k2

2kb
2

u`
2 1 1

u2~j! 1 1
Gv. (19)

By comparing Eq. (19) with Eq. (7) [applied for dark soli-
tons, i.e., h 5 (1 1 u`

2), and choosing the lower sign], we
know that one of the eigenfunctions (guided modes) v(j)
of Eq. (19) is identical to u(j) of Eq. (7) with the eigen-
value (b̄2 2 k2)/2kb 5 1 (or b̄ 5 k 1 G since G/k ! 1
and G/b 5 1). Because the amplitude of the dark soli-
ton, u(j), has only one zero at j 5 0 and is a constant at
j → 6`, the dark soliton is indeed the second guided
mode at cutoff of the waveguide induced by the dark soli-
ton itself. This idea was first introduced in Ref. 21 and
can be extended to all other nonlinear media with a local
response. As a result, a waveguide induced by a one-
dimensional dark soliton can support only one guided
mode, as long as a1a2 < 1.

We now wish to find the modes of the waveguide, v( j̄),
in a waveguide induced by the dark soliton u(j). We
solve Eq. (18) by the shooting method after solving Eq. (7)
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for the dark soliton numerically. Once again, d̄ must be
in the range between unity and u`

2 1 1 to fulfill the con-
dition that the propagation constant of a guided mode, b̄,
lies between the maximum and the minimum values of
the refractive index n̄(x) times k̄0 . Figure 5 shows the
normalized amplitude of the dark soliton u(j)/u` (dashed
curve) and the normalized amplitude of the single guided
mode v(j)/v(0) (solid curve) when a1 5 a2 5 1 at vari-
ous values of u` (0.1, 1, and 10). It reveals that the
higher the intensity ratio, the more confined is the optical
energy near the center of the dark soliton. Figure 6 shows
the propagation constant as a function of u` for a1 5 a2
5 1 and for a1a2 5 0.734. The latter case corresponds
to a dark soliton at a 514-nm wavelength in SBN with
reff 5 248 pm / V and guiding within it a probe beam at a
632-nm wavelength with r̄eff 5 205 pm / V, assuming neg-
ligible difference between nb and n̄b .

From Eq. (17), it is apparent that Dn̄(x) has its maxi-
mum value Dn̄0(u`

2 1 1) at the center of the dark soli-
ton, and it attains half its maximum value at position x
5 6d/2, where u2(x) 5 u`

2/(u`
2 1 2). The separation

between these two points, d, is defined as the FWHM of
the soliton-induced waveguide as shown in Fig. 7. It is
apparent that the induced waveguide becomes higher and
narrower as u`

2 increases [Figs. 7(a) and 7(b)]. Note
that, for u`

2 . 1, the FWHM of the soliton remains
roughly constant in accordance with Ref. 14. One can
qualitatively understand from waveguide theory that the
number of the guided mode should remain unchanged for
various u` values since the numerical aperture,
u`(2nbDn0)1/2, times the width (FWHM) of the induced
waveguide is roughly kept constant (one can numerically
show that rather easily).

To summarize, a waveguide induced by a dark screen-
ing soliton has a single guiding mode, of which the con-
fined energy (confinement factor) and propagation con-
stant are monotonically increasing with intensity ratio
u`

2.

3. EXPERIMENTAL RESULTS
In previous experiments, a probe beam at a less photosen-
sitive wavelength than that used to create the soliton was
guided in the waveguide induced by the bright or the dark

Fig. 4. Illustration of the refractive-index profiles of the wave-
guide induced by bright screening solitons of intensity ratios (a) 4
and (b) 20.
screening solitons.12,13,15 The idea that the number
of guided modes of a waveguide induced by a two-
dimensional15 (one-dimensional16) bright screening soli-
ton depends on the intensity ratio u0

2 has also been dem-

Fig. 5. Amplitude profiles of the dark screening soliton (dashed
curves) and the single guided mode (solid curves) of the soliton-
induced waveguide at (a) u` 5 0.1, (b) u` 5 1, and (c) u` 5 10.
u(j) is normalized to u` and v(j) to v(0).

Fig. 6. Propagation constants of the guided modes of the wave-
guide induced by a dark screening soliton when a1 5 a2 5 1 and
a1a2 5 0.734.
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onstrated experimentally. In this section, we provide di-
rect experimental proof of the modal properties of
waveguides induced by one-dimensional bright and dark
screening solitons, which agrees very well with the calcu-
lation above.

A. Waveguides Induced by Bright Solitons
The experimental setup is similar to that of Ref. 15, ex-
cept that both the soliton and the probe beams are now
one-dimensional and launched with cylindrical lenses, as
shown in Fig. 8. The soliton beam is from an Ar1 laser of
a l 5 488-nm wavelength, whereas the probe beam is
from a He–Ne laser with a l5633-nm wavelength. To
utilize the maximum electro-optic coefficient r33 of the
SBN crystal (whose refractive index nb is 2.35), both the
soliton and probe beams are extraordinarily polarized.
We measure the electro-optic coefficient by a separate in-
terference experiment and find reff 5 307 pm/V and reff
5 250 pm/V for wavelengths l 5 488 nm and l 5 633
nm, respectively. The soliton beam has its minimum
beam waist at the input face of the crystal with a width of
12 mm FWHM (widths of bright or dark solitons in the ex-
perimental section are all measured at FWHM) in the di-
rection parallel to the crystalline c axis and nearly uni-
form (4 mm long) in the other transverse dimension [Fig.
9(a)]. After 4.4 mm of propagation, it diffracts roughly to
37 mm [Fig. 9(c)] with no externally applied voltage. To
control the intensity ratio u0

2,we illuminate the entire
crystal with a uniform, ordinarily polarized, background
beam of the same wavelength as that of the soliton. To
investigate the modal properties of the soliton-induced
waveguide, we launch the probe beam directly into the
waveguide so that its center coincides with that of the
soliton. The lowest-guided mode is directly excited by
this one-dimensional fundamental Gaussian beam. To
excite higher guided modes, however, we must generate
zero crossings across the input probe beam, such that it
will have the same number of zero crossings as the guided
mode we wish to excite. We therefore insert two thin
pieces of glass into the path of the He–Ne laser probe
beam (before the cylindrical lens). By tilting the thin
pieces (Fig. 8), we are able to generate two (2m 1 1)p
phase jumps inside the probe beam to simulate the TEM20
mode. The minimum beam waist of the probe beam at

Fig. 7. Illustration of the refractive-index profiles of the
waveguides induced by dark screening solitons of intensity ratios
(a) 4 and (b) 20.
the input face of the crystal is shown in Fig. 9(b), and the
profile and photograph of the diffracted beam at the out-
put face of the crystal is shown in Fig. 9(d).24

We first create a one-dimensional screening soliton
[Fig. 9(e)] by applying an electric field of 3.04 kV/cm (in
the polarity that generates a negative Dn0) with intensity
ratio u0

2 5 49. Since at this intensity ratio, the fourth
mode is on the edge of the cutoff frequency (Fig. 3), the
third mode is thus well confined in the soliton-induced
waveguide. Figure 9( f ) shows the photograph and the
profile of the guided third mode at the output face of the
crystal. We then reduce the intensity ratio u0

2 to 16 and
the electric field to 2.36 kV/cm accordingly11,14 to keep the
same FWHM of the soliton [Fig. 9(g)]. The third mode
cannot be guided effectively [Fig. 9(h)], although some
guiding effect is observed [as compared to Fig. 9(d)] be-
cause at intensity ratio u0

2 5 16, the third mode is just
on the edge of cutoff (Fig. 3). Finally, we reduce the in-
tensity ratio u0

2 to 4 and adjust the voltage to 1650 V/cm
accordingly, where the third mode does not exist. The
beam of Fig. 9( j ) (u0

2 5 4) is clearly less confined than
that of Fig. 9(h) (u0

2 5 16). However, because the inner
product between the TEM20 mode and the first (funda-
mental) guided mode of the soliton-induced waveguide is
nonzero, the central lobe in Fig. 9( j ) is efficiently confined
by the soliton-induced waveguide, whereas the sidelobes
are scattered away by the waveguide.

We repeat the same procedure for the TEM10 mode, for
which we insert only one thin piece of glass into the cen-
ter of the probe He–Ne laser beam. Figure 10(a) shows
the photograph and profile of the beam at the input face of
the crystal. The experimental results, Figs. 10(b)–10(e),
agree well with the number of modes given by the number
of intersections of dashed vertical lines in Fig. 3 at vari-
ous intensity ratios. At intensity ratios 49 and 16 [Figs.
10(b) and 10(c)], the second mode is well confined in the
induced waveguide, whereas at intensity ratios 4 and 2
(the second mode is at the vicinity of cutoff, Fig. 3) the
second mode cannot be guided effectively [Figs. 10(d) and
10(e)]. Finally, we remove the thin piece of glass and let
the probe beam be TEM00 mode. The experimental re-
sults are shown in Fig. 11. At intensity ratio 2, the probe
beam is well confined [Fig. 11(c)] since the fundamental
mode always exists for all intensity ratios. This confirms
the theoretical results presented in Fig. 3, which shows
that the number of guided modes in a waveguide induced
by a photorefractive bright screening soliton is a mono-
tonically increasing function of the intensity ratio.

Fig. 8. Experimental setup for investigating waveguides in-
duced by bright screening solitons.
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Fig. 9. Photographs and beam profiles of [(a), (c)] the 488-nm laser beam and [(b), (d)] the probe beam of TEM20 mode at the input and
exit faces of the unbiased crystal. Photographs and beam profiles of the soliton beam and the probe beam at the exit face of the crystal
are at intensity ratios u0

2 equal to (e), (f ) 49; (g), (h) 16; and (i), ( j) 4.

Fig. 10. Photographs and beam profiles of a probe beam of TEM10 mode at (a) the input face and at (b)–(e) the exit face of the crystal
at intensity ratios u0

2 equal to (b) 49, (c) 16, (d) 4, and (e) 2.
B. Waveguides Induced by Dark Solitons
The experimental setup to probe the waveguide induced
by dark solitons is the same as that in Ref. 12. The soli-
ton beam is from an Ar1 laser at a 514-nm wavelength,
and the probe beam is from a He–Ne laser with a 633-nm
wavelength. A different SBN crystal is used for the ex-
periment of the dark-soliton-induced waveguides, which
was grown by the vertical Bridgman method. The refrac-
tive index nb is now 2.35 and the electro-optic coefficient
r33 is 280 pm/V (270 pm/V) for the soliton beam (probe
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beam). This gives rise to a normalization factor product
a1a2 equal to 0.8, for which the propagation constant of
the probe beam lies between the two curves in Fig. 6, still
experiencing a single-mode waveguide. The dark soliton
beam is extraordinarily polarized, collimated large
enough to cover the entire crystal uniformly, and reflected
from a l/4 step mirror to bear a p-phase jump in the cen-
ter of the beam (the origin of the dark soliton). An ordi-
narily polarized, uniform, background illumination is
launched to cover the entire crystal for controlling the in-
tensity ratio. The dark notch at the input face of the
crystal is 19 mm wide [Fig. 12(a)]. It diffracts to 35 mm at
the output face [Fig. 12(d)] of the crystal after 11.7 mm of
propagation. The fundamental mode of the probe beam
diffracts from 16 mm [Fig. 12(b)] to 90 mm [Fig. 12(e)]
within the same propagation distance.

Without background illumination, which implies that
the intensity ratio approaches infinity, we apply 2180 V
between the electrodes, which are separated by 5.3 mm.
After the dark soliton forms, as shown in Fig. 12(g), taken
at the exit face of the crystal, the probe beam in the fun-
damental mode is confined to 23 mm within the soliton-
induced waveguide [Fig. 12(h)]. We then insert a thin
piece of glass into the probe beam and tilt the glass to
generate a (2m 1 1)p-phase jump at the center of the

Fig. 11. Photographs and beam profiles of [(a), (c)] the soliton
beam and [(b), (d)] the probe beam of TEM00 mode at the input
and exit faces of the crystal.
probe beam so as to simulate the TEM10 mode [Fig. 12(c)].
In the absence of the soliton-induced waveguide, this
beam diffracts [Fig. 12( f)]. As expected from the above
prediction that dark solitons induce only single-mode
waveguides when a1a2 , 1, the second mode does not ex-
ist at any intensity ratio. Therefore no waveguiding ef-
fect is observed for the second-mode beam [Fig. 12(i)] un-
der this condition. We then reduce the intensity ratio to
2 by adding background illumination, increase the volt-
age to 2320 V accordingly,12,14 and generate the dark
soliton shown in Fig. 12( j). Repeating the above proce-
dure with the first and second modes of the probe beam,
we find that at this intensity ratio the soliton-induced
waveguide is single-mode [Figs. 12(k) and 12(l)]. We test
this at another intensity ratio (of 5) and find the same re-
sult. This confirms that waveguides induced by photore-
fractive dark screening solitons are single mode, as pre-
dicted by the theory in the previous section, as long as
a1a2 , 1.

4. DISCUSSION
In the theoretical section of this paper, two assumptions
were made: (1) The polarization of the probe beam is
parallel to one of the principal crystalline axes, and (2)
the intensity of the probe beam does not affect the soliton-
induced waveguide. The first assumption does not re-
strict the theoretical treatment even when the polariza-
tion of the probe beams is not parallel to the principal
crystalline axes. Furthermore, one can straightfor-
wardly generalize the theory for an arbitrarily polarized
probe beam by decomposing it into two eigenpolarization
components, with each parallel to a principal axis. This
problem is then simplified to solving for a probe beam
propagating in a birefringent waveguide. Notice that
this equivalent birefringent waveguide can have different
index depths for both polarizations, yet the widths are
identical. This is because the depth of the waveguide de-
pends on the electro-optic coefficient reff , whereas its
width depends only on the intensity distribution of the
soliton, u2(x), irrespective of the guided (probe) beam.
The second assumption can be more restrictive but does
not cause any problem in photorefractive media as long as
the absorption of the probe beam is much smaller than
that of the soliton. On the other hand, if the probe beam
is of a photosensitive wavelength that excites the elec-
trons from midgap donors to the conduction band, it will
affect the soliton. The problem can be treated in a man-
ner similar to that of coupled soliton pairs, which has
been thoroughly studied recently.25–27

5. APPLICATIONS
The use of solitons, in particular photorefractive solitons,
to induce waveguides in a bulk medium brings about sev-
eral interesting applications. Some potential applica-
tions are common to all spatial solitons in Kerr and non-
Kerr nonlinear media. These include reconfigurable
near-field optical interconnects and optical wiring. For
these applications, the only advantage photorefractive
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solitons have over Kerr solitons28 is the dimensionality:
Since photorefractive solitons can self trap in both trans-
verse dimensions,2,7,17,18 they can induce two-dimensional
waveguides.15 But the recently discovered quadratic
solitons29 and solitons in saturable nonlinear media30

were shown to exhibit two-dimensional self-trapping and
are expected to induce two-dimensional waveguides as
well. There are, of course, several major differences in
the properties of the soliton-induced waveguides in each
of these cases (such as optical power required, response
time, and energy required for switching), which have been
discussed at length in Ref. 14. On this subject we just
add two recent advances with photorefractive solitons.
The first is a recent observation of self-trapping in photo-
refractive semiconductors (InP) and induced waveguid-
ing, which was carried out at an optical telecommunica-
tion wavelength (1.3 mm) and with a formation time of the
order of microseconds.31,32 The second is the creation of
very fast high-intensity screening solitons, which was
predicted in Ref. 14 and recently observed in SBN with a
pulsed laser at nanosecond time scales.33
A second application of photorefractive solitons utilizes
soliton-induced waveguiding for beam steering. This ap-
plication is commonly referred to as soliton dragging, in
which an intense soliton beam is able to guide and steer a
weak signal beam, and which was observed in Kerr34 and
quadratic media.35 What makes photorefractive solitons
unique for beam-steering applications is their wavelength
sensitivity. When the photorefractive solitons are cre-
ated at a highly sensitive wavelength, and the signal
(probe) beam is at a nonphotosensitive wavelength, a very
weak (microwatt) soliton beam can guide and steer an in-
tense probe beam. This idea was demonstrated with
photorefractive quasi-steady-state solitons,13 screening
solitons,12,15 and photovoltaic solitons.4

The last and most unique application of waveguides in-
duced by photorefractive solitons is for nonlinear fre-
quency conversion, which was first proposed in Ref. 14.
Since the conversion efficiency of second-harmonic gen-
eration and other x (2) parametric processes always scales
with the optical intensity of the pump beam, it is desir-
able to confine the interacting beams in a waveguide
Fig. 12. Photographs and beam profiles at [(a)–(c)] the input and [(d)–(l)] the exit faces of the crystal for the dark soliton beam and of
probe beams of TEM00 and TEM10 modes. Since the diffraction pattern in the x direction is too large to fit into our CCD camera under
the same magnification as the other photographs, we show here only the truncated photographs and profiles in ( f ), (i), and (l).
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structure. This implies that phase matching is now re-
quired among the propagation constants of the interact-
ing guided modes of the waveguide (rather than among
the wave vectors, as in a bulk medium). Phase matching
can be obtained by use of either birefringence or periodic
poling (quasi-phase matching). With a fabricated wave-
guide, there is very little second-harmonic-generation
wavelength tuning possibility36 with either phase-
matching technique because the structure is fixed (para-
metric amplifiers, of course, allow more tunability be-
cause one has the freedom of varying both pump and
idler). Typical tuning techniques include angle and tem-
perature tuning (see Ref. 36 for a detailed discussion).
Since both have a very limited tunability range for
second-harmonic generation in waveguides, structures
with several (laterally parallel to each other) periods of
poling were fabricated,37 giving rise to extended tuning.
Obviously, it is highly desirable to have waveguide struc-
tures in which either the phase matching (periodic poling
or crystalline directions) or the waveguide properties
(propagation constants) are tunable without mechanical
movements.

Waveguides induced by photorefractive solitons offer
just that: a large degree of tuning of all the waveguide
parameters. Since most photorefractive materials are
noncentrosymmetric crystalline media, they exhibit large
second-order nonlinearities. Thus nonlinear frequency
conversion can be efficiently done in waveguides induced
by photorefractive solitons. Several features of photore-
fractive solitons make this possible and very attractive.
First, the waveguides can be induced by very weak soliton
beams, and two (or three) intense beams can be guided in
them, all of longer wavelengths, interacting with each
other via x (2). A second alternative would include con-
figurations in which the shorter-wavelength beam (which
is generated in the frequency-conversion process) also
forms a soliton, which, at the same time, confines (guides)
the other (pump, idler) beams as well. Third, phase
matching at a specific operation point can be achieved by
use of crystalline birefringence (such as in photorefractive
KNbO3) or by periodic poling. The latter can be done by
means of standard electrical poling techniques36,37 as in
LiNbO3 and SBN (Ref. 38) or by more exotic means, which
utilize photorefractive space-charge fields as demon-
strated in BaTiO3 (Ref. 39), SBN (Refs. 40–42), and
KNbO3 (Ref. 43). Especially notable is the result re-
ported in Ref. 38, which has shown high efficiency of pe-
riodic poling and of second-harmonic generation in the
very same crystal we use in the present paper for gener-
ating solitons: SBN. Finally, as shown in the present
paper, waveguides induced by screening solitons are
highly controllable by electro-optic means (no mechanical
movements needed), simply by tuning the soliton along
its existence curve. As shown in Figs. 2, 3, and 6, the
propagation constants of the fundamental guided mode
are tunable, by a factor uDn0u/nb for bright solitons and by
;100(uDn0u/nb) for dark solitons, by simply varying the
soliton-intensity ratio and applied voltage to walk along
the existence curve. This means that the phase-
matching condition, whether it is achieved by birefrin-
gence or by periodic poling, is highly tunable (especially
for waveguides induced by dark solitons), with a very
large degree of accuracy. We foresee that the combina-
tion of flexible phase matching and high-power confine-
ment in waveguides induced by photorefractive solitons
will lead to efficient and highly tunable nonlinear fre-
quency converters.

6. CONCLUSIONS
In this paper, we have shown that the modal properties of
the waveguides induced by the bright and dark one-
dimensional screening solitons depend on the ratio be-
tween the peak intensity of the soliton and the sum of the
background illumination and the dark irradiance. The
number of guided modes in a waveguide induced by a
bright soliton increases monotonically with increasing in-
tensity ratio, whereas waveguides induced by dark soli-
tons are always single mode for all intensity ratios. In
both cases, the wavelength of the probe beam is assumed
to be longer than that of the soliton, for which the photo-
refractive crystal is less photosensitive. The propagation
constants of the guided modes are a function of the inten-
sity ratio and can be tuned continuously for both bright-
and dark-soliton-induced waveguides. Our experimental
results show very good agreement with the theoretical
calculations. Finally, we discuss several applications
utilizing waveguides induced by the photorefractive
screening solitons.
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