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Photorefractive polymeric optical spatial solitons
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We predict the formation of optical spatial solitons in photorefractive polymers. The orientational enhance-
ment from the doped chromophores and the dependency of the quantum eff iciency of generating mobile holes on
the electric f ield make the polymeric solitons behave differently from other photorefractive solitons.  1999
Optical Society of America
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Since photorefractive (PR) optical spatial solitons were
discovered1 in PR inorganic crystals, many types of PR
soliton and interesting soliton phenomena have been
discovered and studied.2 The PR screening soliton3 – 5

is one of the most thoroughly studied solitons. It
occurs when an externally biasing electric field is
partially screened by space charges induced by a
soliton light beam. The total biasing and space-charge
field can, by means of the electro-optic effect, create a
waveguidelike refractive-index profile that focuses the
soliton light beam. The formation of a PR screening
soliton is a net result of the balance between the
natural diffraction of the soliton light beam and the
PR focusing effect.

PR polymers6 – 8 were discovered a year earlier than
PR optical spatial solitons and have attracted much re-
search interest. Of all PR polymers, guest–host PR
polymers,9 made from photoconducting polymer hosts
and doped with high levels of chromophores, are one
of the most successful types of PR polymer. They pro-
vide high PR efficiency because of their orientational
enhancement,10 which results from the rotational mo-
bility of chromophores. In some systems, the orien-
tational enhancement may contribute more than 88%
of the index change to the PR effect.11 Except for the
origin of the index change, the guest–host PR poly-
mers operate very similarly to the PR inorganic crys-
tals: Charges are excited by light, redistributed by a
diffusion or biasing field, trapped, and yield a space-
charge field. The space-charge field then gives rise
to the index change by means of an orientational and
(or) an electro-optic effect. We therefore expect that
PR polymers will be able to support PR solitons, and
we name them PR polymeric solitons. In this Letter
we examine intuitively and analytically how polymeric
solitons can form. We find that the orientational en-
hancement and the dependency of the quantum effi-
ciency of generating mobile holes on the electric field
are the key factors that affect the polymeric solitons.

Assume that the polymer is arranged as in Fig. 1(a).
Biasing field Eext is applied along x̂, and the one-
dimensional soliton light beam is launched along ẑ.
Before Eext is applied, thermal agitation causes the
chromophores to be randomly oriented, giving rise
to a homogeneous and isotropic refractive index. As
Eext is applied, the birefringent chromophores align
more along x̂ [Fig. 1(d)]. This alignment yields a posi-
tive (negative) index change for an x̂- � ŷ-� polar-
ized light [Figs. 1(e) and 1(f), dashed lines] for
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chromophores with its polarizability �a//� parallel to
its dipole moment larger than its perpendicular polar-
izability �a��. When a bright soliton light beam with
intensity I is launched [Fig. 1(b)], hole density9 r
increases as f�I 1 Ib�, where f is the quantum effi-
ciency that depends on the static electric field and Ib
is a uniformly launched background illumination. If
Eext is high enough, the diffusion effect9,12 is negligible.
Therefore the holes travel in x̂ and leave negatively
ionized charge generators behind in the region where
they are excited. The holes are retrapped after trav-
eling some short distances. The separated positive
and negative space charges induce electric field Esc
in 2x̂. This charge separation process keeps going
on until steady state is reached, that is, when Esc is
accumulated to be large enough to balance Eext. As
a result, the total field E � Esc 1 Eext reaches its
lowest value at the soliton peak and is a constant
away from the soliton [Fig. 1(c)]. For polymers with
glass-transition temperatures lower than the ambient
temperature, the chromophores near the soliton peak
can relax back [Fig. 1(d), central part] to be more
randomly oriented and reduce the index change. The
x̂- � ŷ-� polarized light thus sees an antiwaveguide
(waveguidelike) index profile [Figs. 1(e) and 1(f), solid
curves]. This means that the biased polymer is a
self-defocusing (self-focusing) medium for an x̂- � ŷ-�
polarized light beam. If the ŷ-polarized light beam
is launched as the guided mode of the induced wave-
guide, it can self-trap without diffraction and become

Fig. 1. Arrangement for observing (a) bright and (g) dark
polymeric solitons. Formation of (b–f) bright and (h–l)
dark polymeric solitons. (d), and (j) Alignment of the
chromophores. The degrees of the alignment are exagger-
ated and should be more random in a real situation.
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an optical spatial soliton. By similar arguments, a
dark soliton can be supported by the poled polymer if
it is x̂ polarized. This property, that polarization of
the soliton decides whether bright or dark solitons can
be supported, has been found in a cubic PR inorganic
crystal.13 However, an opposite biasing field on a PR
polymer does not reverse the sign of the index change.

In the analysis, we start from the model equations14

at steady state and the Helmholtz equation that de-
scribes the soliton light beam in �1 1 1� dimensions:
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In Eqs. (1)–(4), J is the current density, e is the charge
on a hole, m is the hole mobility, D is the diffusion
coefficient, N and N2 are the densities of total and
ionized charge-generating molecules, respectively, s is
the photoexcitation cross section, T and T1 are the
densities of total and ionized charge traps, respectively,
r is the thermal detrapping rate, and er is the static
relative permittivity of the polymers. In Eq. (5), n
is the nonlinear refractive index to be determined
and Eopt�x, z� � w�x, z�exp�ik0nbz�

p
Ib 1 c.c. is the

electric-f ield component, polarized in x̂ (or ŷ) for a
dark (or bright) soliton, of the optical beam of the
soliton, where w is the amplitude of the slowly varying
envelope normalized to

p
Ib , nb is the unperturbed

index, k0 � 2p�l, and l is the free-space wavelength
of the light. The intensity of the soliton is I � jwj2Ib.
The soliton intensity ratio is defined as the maximum
of jwj2. The rate equation for the hole density is
not listed because it is redundant with Eqs. (1)–(3).
Note that three properties of PR polymers deserve
attention: (1) by Onsager theory,15 f ~ Em for E from
10 to 100 V�mm, where m is a material parameter
that ranges from less than 1.0 to greater than 3.0;
(2) mobility16 m ~ exp�C�

p
E 2 1��, where C is an

experimentally determined constant; and (3) by the
Langevin model,9 the recombination and trapping rates
in Eqs. (2) and (3) are em�e0er .

First we derive r � �e0er�em� �sfN�I 1 Ib��T1� �1 2

�e0er�eT1� �≠E�≠x��21 by steps similar to those in
Ref. 4 to simplify Eqs. (2)–(4) with typical polymer
parameters,14,17 of which T1 and N2 of the order of
1017 cm23 and N of the order of 1019 cm23 are much
larger than r, which is of the order of 1015 cm23 under
the soliton and background illumination of intensity
0.1 W�cm2. Further, we drop18 the term that contains
≠E�≠x and the diffusion in Eq. (1) and obtain r �
�e0ersN�eT1� �f�I 1 Ib��m� and J � emrE. Using
the relationship f ~ Em and the constancy of J, we
can easily derive

Em11 � Em11
0 �I0 1 Ib���I 1 Ib� , (6)

in which the dependency on mobility disappears. The
constants E0 and I0 are, respectively, electric field
E and soliton intensity I , far away from the soliton
center.

We then turn to Eq. (5), which leads to the paraxial
equation

iwz 1
1
2k

wxx 1
k2
0

2k
D�n2�w � 0 , (7)

where k � k0nb, D�n2� � n2 2 n2
b, wz � ≠w�≠z, etc.

Considering only the birefringence that is due to the
orientational effect,11,12 which, e.g., accounts for more
than 88% of the PR effect in polymers doped with
2, 5-dimethyl-4-(p-nitrophenylazo)anisole or 99% with
N-2-butyl-2, 6-dimethyl-4H-pyridone-4-ylidenecyano-
methyl-2 acetate, we have the index change gov-
erned10,19 by D�n2�x � 4pNchDa��cos2 u� 2 1�3� and
D�n2�y � 2D�n2�x�2 for x- and y-polarized light, re-
spectively, where Da � a// 2 a� and Nch is the density
of chromophores. The distribution �cos2 u� �

Rp

0 exp 3

�2U�kBTa�cos2 u sin udu�
Rp

0 exp�2U�kBTa�sin udu is a
function of dipole interaction energy U � 2mD ?
E 2 p ? E�2 and ambient temperature Ta, where u
is the angle between the permanent dipole moment
�mD � and the electric field �E� and kB is the Boltz-
mann constant. We neglect20 the induced dipole
energy, p ? E�2, which contributes little to U . The
exponents in both integrands of �cos2 u� then become
mDET cos u�kBTa. Equation (7), which contains
�cos2 u� and with E to be determined by Eq. (6),
is a highly nonlinear differential-integral equation,
which can be solved only numerically. However,
��cos2 u� 2 1�3�, shown in Fig. 2, can be approxi-
mated10 by the first nonzero term 0.043�mDE�kBTa�2
of its power series for mDE�kDTa , 0.8 (Fig. 2,
inset), which is typical of most PR guest–host poly-
mers with mD , 10D for E , 100 V�mm and Ta �
300 K. Equation (7) is simplified to
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2k
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k2
0

2k
Cx, yE2w � 0 , (8)

Fig. 2. Angle distribution �cos2 u� 2 1�3. The inset
shows that �cos2 u� 2 1�3 (solid curve) can be approximated
by 0.043�mDE�kBTa�2 (dashed curve) for mDE�kBTa , 0.8.
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Fig. 3. Normalized soliton widths of (a) bright solitons as
function of u�0� and (b) dark solitons as a function of

p
g for

several m values.

with Cx � 0.54NchDa�mD�kBTa�2 and Cy � 2Cx�2 for
x- and y-polarized light, respectively.

We can establish the envelope evolution equation by
inserting Eq. (6) into Eq. (8):
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where x0 is an arbitrary spatial width, z � z�2kx2
0,
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0x
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tensity ratio for dark solitons, and g � 0 for bright soli-
tons. Choosing x0 � 1��k0E0

q
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we obtain the equation for the soliton envelope:
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where the plus (minus) corresponds to Cy �Cx� and
bright (dark) solitons, w�j, z � � u�j�exp�iGz �, u is
the normalized soliton envelope amplitude, and G is
the normalized soliton propagation constant. Equa-
tion (10) is actually the same as those for the PR
screening solitons3,4 in noncentrosymmetric and cen-
trosymmetric PR crystals21 for m � 1 and m � 0,
respectively. Equation (10) is solved by quadrature
similar to that in Ref. 3. For bright solitons, with
initial conditions u�0� � u0, u0�0� � 0; u�`� � u0�`� �
u00�`� � 0; and u00�0��u�0� , 0, we have G � ��m 1 1��
�m 2 1�� �1 2 �u2

0 1 1��m21�/�m11���u2
0 for m fi 1 and

G � 2ln�u2
0 1 1��u2

0 for m � 1, where u2
0 is the soli-

ton peak intensity divided by Ib or is called the
bright soliton intensity ratio. For dark solitons, with
u2�`� � g, u0�`� � u00�`� � 0; u�0� � 0; and u0�0�
being real, we have G always equal to 1. We can
easily obtain the soliton profiles by putting G into
Eq. (10) and solving it numerically. We can also evalu-
ate the required voltage across the polymer by inte-
grating Eq. (6) after Eq. (10) is solved. The soliton
widths, defined as the full width at half-maximum of
the soliton intensity is normalized to x0, are plotted
in Fig. 3. To estimate the obtainable minimal soli-
ton width we use the following PR polymer parame-
ters6,11: m � 2.0, nb � 1.6, and Dnx � 1.3 3 1022 for
Eext � 100 V�mm with l � 700 nm. Solitons of widths
less than 1.5 mm (dark solitons) or 3 mm (bright soli-
tons) are possible if the intensity ratio is adjusted to
correspond to each minimal normalized soliton width.
Nevertheless, for solitons of this size, the validity of the
paraxial approximation and the validity of dropping
the diffusion and ≠E�≠x terms need to be reinvesti-
gated; such an investigation is beyond the scope of this
Letter.

In conclusion, we have shown intuitively and ana-
lytically that photorefractive polymers may support PR
polymeric optical spatial solitons.
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