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1. INTRODUCTION
Optical spatial solitons form when the self-focusing effect
exactly balances the natural diffraction of the light beam.
Kerr-type solitons were the first optical solitons that were
predicted,1 yet they require very high power and can only
be observed in a one-dimensional form and in a slab
waveguide owing to both catastrophic self-focusing2 and
modulation instability.3 In the past decade, stable two-
dimensional optical spatial solitons have already been ob-
served in several saturable nonlinear media. They are
the quadratic solitons, which occur during a second-
harmonic generation process when the fundamental and
the second harmonics are strongly coupled by the second-
order nonlinearities, solitons in saturable nonlinear
atomic vapor, which exist at the optical frequency close to
the vicinity of the resonant transition, and photorefrac-
tive solitons. The discovery4–13 of the latest has even
loosened the strict conditions for observing optical spatial
solitons, i.e., photorefractive solitons require low power
(microwatt, or even nanowatt), and may exist in a two-
dimensional form and in a bulk medium.

Many branches of photorefractive solitons, such as
quasi-steady-state photorefractive solitons,4 screening
solitons,5–7 photovoltaic solitons,8–10 solitons in centro-
symmetric photorefractive crystals,11 and solitons in pho-
torefractive semiconductors,12 have already been
discovered.13 Among these photorefractive solitons,
screening solitons are those most thoroughly studied. It
occurs when an externally biasing electric field is par-
tially screened by space charges induced by the soliton
light beam. The dc biasing and space-charge field can, by
the electro-optic effect, create a waveguidelike refractive-
index profile that focuses the soliton light beam and ex-
actly compensates for the natural diffraction of the soliton
light beam.

On the other hand, photorefractive polymers14 have be-
gun to attract much research interest since their discov-
ery in 1991. This is because, for quite a few applications
(e.g., dynamic holographic storage15 and optical informa-
tion processing16) that use photorefractive effects, photo-
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refractive polymers can provide many advantages over
the traditional photorefractive inorganic crystals. These
advantages include flexibility, cheapness, and ease of pro-
cessing. Photorefractive polymers17–19 of the guest–host
type, e.g., PVK:FDEANST:TNF ( poly-N-vinylcarbazole,
fluorinated diethylaminonitrostyrene, 2,4,7-trinitro-9-
fluorenone), DMNPAA:PVK:ECZ:TNF (2,5-dimethyl-4-p-
nitrophenylazo anisole, poly-N-vinylcarbazole, N-ethyl-
carbazole, 2,4,7-trinitro-9-fluorenone) and PVK:PDCST:
BBP:C60 ( poly-N-vinylcarbazole, 4-piperidinobenzyl-
idene-malononitrile, butyl-benzyl-phthalate, C60), made
from photoconducting polymer hosts and doped with high
levels of chromophores with permanent dipole moments
and low glass-transition temperature (Tg) are those most
successful types of photorefractive polymers. They may
provide very high photorefractive efficiency in two-beam
coupling or four-wave mixing owing to the orientational
enhancement.20

Although the major effect causing the index change for
the photorefractive polymer is the orientationally en-
hancement effect of the doped chromophores, which is dif-
ferent from the usual electro-optic effect in the photore-
fractive inorganic crystals, we showed that the
photorefractive polymer can support optical spatial soli-
tons solely by the orientationally enhanced birefringence,
and we named them polymeric solitons in a previous
paper.21 However, except in a few photorefractive poly-
mers whose orientationally enhanced birefringent effect
dominates almost all the refractive-index change, the ori-
entationally enhanced electro-optic effect22 is not negli-
gible. We therefore need to take the electro-optic effect
into account for the formation of polymeric solitons in
most polymers.

In this paper we make a complete analysis of the poly-
meric solitons that are supported by the entire nonlinear-
ity (the orientationally enhanced birefringence plus the
orientationally enhanced electro-optic effect) of the chro-
mophores. It is shown that the orientationally enhanced
electro-optic effect may counteract or enhance the orien-
tationally enhanced birefringence for giving rise to the
2001 Optical Society of America
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refractive-index change. If the counteraction is too large,
it is not necessary, as concluded in Ref. 21, that a bright
(dark) soliton be supported when its optical field is per-
pendicular ( parallel) to the applied dc field. Otherwise,
only the coefficients of the nonlinear index change is
modified owing to the addition of the electro-optic effect.
This leaves the soliton-existence curves (the normalized
soliton width versus the square root of the soliton-
intensity ratio) the same as those of the polymeric soli-
tons supported solely by the orientationally enhanced bi-
refringence, but with a new soliton-width unit. In the
end, we discuss the formation conditions and the charac-
teristics of the new type of polymeric solitons in several
aspects.

2. GENERAL TREATMENT
The analysis for polymeric solitons is based on the setup
shown in Figs. 1(a) and 2(a). The dc electric field is ex-
ternally applied in the x direction. The steady-state con-
tinuity equation,21 rate equations, Gauss’s law, and the
wave equation for the soliton beam propagating in the z
direction are

J 5 emrE 2 eD
]r

]x
5 const. (1)

]N2

]t
5 sf~N 2 N2!~I 1 Ib! 2

em

«r
rN2 5 0, (2)

]T1

]t
5

em

«r
r~T 2 T1! 2 rT1 5 0, (3)

]E

]x
5

4pe

«r
~r 2 N2 1 T1!, (4)

S ]2

]x2 1
]2

]z2DEopt 1 ~k0n !2Eopt 5 0, (5)

where n is the nonlinear index of refraction to be deter-
mined. Notice that by the Langevin model18 the recom-
bination and trapping rates in Eqs. (2) and (3) are em/«r .
The dependent variables are: J, the current density; E,
the dc field along the x direction, which is screened by the
soliton light beam; m,23 the dc-field dependent hole mobil-
ity; f,24 the dc-field dependent quantum efficiency; r, the
hole density; and N2 and T1, the densities of ionized
charge-generating molecules and charge traps, respec-
tively. Relevant parameters are the wave number k0
5 2p/l0 , with l0 the free-space wavelength of the light;
e, the charge on a hole; D, the diffusion coefficient; N
and T, the densities of total charge-generating molecules
and charge traps, respectively; s, the photoexcitation
cross section; «r , the static relative permittivity of the
polymers; and r, the thermal detrapping rate. The
optical field of the soliton beam is Eopt(x, z)
5 w(x, z)exp(ik0 nbz)AIb 1 c.c., which is polarized in the
x (or y) direction, where w is the slowly varying envelope
of the soliton normalized to AIb, Ib is the background il-
lumination, and nb is the unperturbed refractive index.
The actual intensity of the soliton is therefore I
5 u wu2Ib , and the soliton-intensity ratio is defined as the
maximum of u wu2. Utilizing the variable transformation
j 5 x/x0 , z 5 z/(2k0nbx0

2), with x0 an arbitrarily chosen
normalizing spatial width, D(n2) 5 n2 2 nb

2, and w(j, z)
5 u(j)exp(iGz), where u is the normalized soliton ampli-
tude and G is the soliton propagation constant, we trans-
form Eq. (5) into a dimensionless nonlinear wave equa-
tion:

d2u~j!

dj2 5 u9~j! 5 @G 2 k0
2x0

2 D~n2!#u~j!. (6)

With typical photorefractive polymer parameters,19 of
which T1 and N2 of the order of 1017 cm23 are much
smaller than N of the order of 1019 cm23 and much larger
than r of the order of 1015 cm23, under the soliton and
background illumination of intensity 0.1 W/cm2, we have
approximation r > «rsfN(I 1 Ib)/emN2 from Eq. (2)

Fig. 1. Formation of bright photorefractive polymeric optical
spatial solitons: (a) arrangement; (b) intensity distribution; (c)
electric field distribution; (d) the alignment of the chromophores,
where the degrees of the alignment are exaggerated and should
be more random in a real situation; (e) the index-change profile
for Cx,y . 0; (f ) the index-change profile for Cx,y , 0.



Fang-Wen Sheu and Ming-Feng Shih Vol. 18, No. 6 /June 2001/J. Opt. Soc. Am. B 787
and N2 > T1 2 («r/4pe)(]E/]x) from Eq. (4). We fur-
ther drop25 the term containing ]E/]x and obtain N2

> T1. By assuming that the thermal detrapping is neg-
ligible, we have T1 > T from Eq. (3) and consequently r
> («rsN/eT)@ f(I 1 Ib)/m#. We also ignore25 the diffu-
sion term in Eq. (1) and obtain J > emrE > const., im-
plying f(I 1 Ib)E > const. Using the relationship24 f
} Em, we easily derive the total dc electric field as a func-
tion of the soliton intensity

Em11 5 E`
m11~I` 1 Ib!/~I 1 Ib!

5 E`
m11~I` 1 Ib!/~u2Ib 1 Ib!, (7)

where E` and I` are, respectively, the electric field E and
the soliton intensity I, far away from the soliton center, at
which they are constant.

Fig. 2. Formation of dark photorefractive polymeric optical spa-
tial solitons: (a) arrangement; (b) intensity distribution; (c) elec-
tric field distribution; (d) the alignment of the chromophores; (e)
the index-change profile for Cx,y . 0; (f) the index-change profile
for Cx,y , 0.
A. Change of Macroscopic Polarization from
Orientationally Enhanced Birefringent and Electro-Optic
Effects
To connect Eqs. (6) and (7), we need to obtain the change
of the nonlinear refractive index D(n2) 5 n2 2 nb

2 as a
function of E, then as a function of u. We now focus on
the response of the doped nonlinear optical chromophores
with large permanent dipole moment and rotational mo-
bility, in the presence of the soliton optical field and the
dc field. The microscopic dipole moment of each chro-
mophore molecule is p 5 mD 1 a • E 1 b : EE 1 ¯ ,
where mD is the molecular permanent dipole moment
whose direction is along the molecular c axis, a is the mo-
lecular optical polarizability, and b is the molecular opti-
cal hyperpolarizability tensor. The induced macroscopic
polarization at optical frequency v is obtained from the
orientational averaging of the molecular induced dipole
moment:

Pv 5 Nch^pv& 5 Nch^a~v! • Ev&

1 Nch^b~2v;0, v! : E0Ev& 1 ¯ , (8)

where Nch is the number density of the chromophores, E0

is the dc electric field, and Ev is the optical electric field.
For convenience we set the laboratory coordinate axes

to be (x, y, z) and the molecular principal axes frame to
be (1, 2, 3) as shown in Fig. 3. The induced first-order
microscopic dipole moment in the frame of the molecular
principal axes is pi

(1) 5 a ii(v)Ei
v , with i 5 1,2,3. Since

the chromophores are uniaxial, we set a11 5 a22 5 a'

and a33 5 a i . The induced microscopic second-order di-
pole moment is pi

(2) 5 b ijk(2v;0, v)Ej
0Ek

v , with i,j,k
5 1,2,3, referring to the principal axes of the molecule.
For a rodlike chromophore molecule the hyperpolarizabil-
ity b333 is the dominant term.22 Hence we assume that
the only dominant term is p3

(2) > b333(2v;0, v)E3
0E3

v ,
which is along the molecular 3-axis. Since the polarity of
the dc field is along the x direction, we set E0 5 Ex

0x̂.
If we launched the light beam with polarization paral-

lel to the x axis (that is, Ev 5 Ex
vx̂), the induced first- and

Fig. 3. Solid lines indicate the laboratory coordinates axes
(x, y, z). Dashed lines indicate the molecular principal axes (1,
2, 3) with the c axis along the 3-axis. The dc bias electric field is
applied along the x axis. u is the angle between the chro-
mophore dipole (3-axis) and the dc poling field (x axis). This sys-
tem has a macroscopic rotational symmetry along the x axis.
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second-order macroscopic polarizations at the optical fre-
quency and in the x direction are

Px
~1 !,BR 5 Nch^ px

~1 !&

5 Nch^ p1
~1 ! cos u1x 1 p2

~1 ! cos u2x 1 p3
~1 ! cos u3x&

5 Nch^a'Ex
v cos2 u1x 1 a'Ex

v cos2 u2x

1 a iEx
v cos2 u3x&

5 Nch^a' 1 Da cos2 u&Ex
v , (9)

Px
~2 !,EO 5 Nch^ px

~2 !& 5 Nch^ p3
~2 ! cos u3x&

5 Nch^b333E3
0E3

v cos u3x&

5 Nchb333^cos3 u&Ex
0Ex

v , (10)

where u ix is the angle between the molecular principal i
axis and the laboratory x axis. In Eq. (9) the relationship
of the direction cosines cos2 u1x 1 cos2 u2x 1 cos2 u3x 5 1
and Da [ (a i 2 a') has been used. u [ u3x also is the
angle between mD and E0. The induced first-order mac-
roscopic polarization Px

(1),BR corresponds to the so-called
orientationally enhanced birefringence, and the second-
order term Px

(2),EO corresponds to the orientationally en-
hanced electro-optic effect in photorefractive polymers.
The net change of the sum of the first two terms of the
macroscopic polarization at optical frequency and in the x
direction owing to the presence of the dc field Ex

0 5 E,
therefore is

DPx
v 5 @Px

~1 !,BR 1 Px
~2 !,EO #Ex

05E 2 @Px
~1 !,BR 1 Px

~2 !,EO #Ex
050

5 NchDa~^cos2 u&E 2 ^cos2 u&0!Ex
v

1 Nchb333~^cos3 u&EE !Ex
v . (11)

Similarly, if we launched the light beam that is polar-
ized parallel to the y axis (that is, Ev 5 Ey

vŷ), the induced
first- and second-order macroscopic polarizations at the
optical frequency and in the y direction are

Py
~1 !,BR 5 Nch^a' 1 Da cos2 u3y&Ey

v , (12)

Py
~2 !,EO 5 Nchb333^cos u3x cos2 u3y&Ex

0Ey
v .

(13)

The net change of the sum of the first two terms of the
macroscopic polarization at optical frequency and in the y
direction owing to the presence of the dc field Ex

0 5 E is

DPy
v 5 @Py

~1 !,BR 1 Py
~2 !,EO #Ex

05E 2 @Py
~1 !,BR 1 Py

~2 !,EO #Ex
050

5 2NchDa
1

2
~^cos2 u&E 2 ^cos2 u&0!Ey

v

1 Nchb333

1

2
@~^cos u&E 2 ^cos3 u&E!E#Ey

v . (14)

We used the statistical equality ^cos2 u3y& 5 ^cos2 u3z& (ow-
ing to the homogeneity in y and z) and ^cos2 u3x&
1 ^cos2 u3y& 1 ^cos2 u3z& 5 1 to simplify Eq. (14).

B. Index Change from dc Poling Field
The changes of the refractive index for x- and y-polarized
light beams are therefore governed, respectively, by
D~n2!x 5 4pNch@Da~^cos2 u&E 2 ^cos2 u&0!

1 b333^cos3 u&EE#, (15)

D~n2!y 5 4pNchF2
1

2
Da~^cos2 u&E 2 ^cos2 u&0!

1
1

2
b333~^cos u&E 2 ^cos3 u&E!EG . (16)

Both Eqs. (15) and (16) are functions of the dc field E.
The statistical average of the mth power of the cosine
function in Eqs. (15) and (16) can be evaluated26 by the
Maxwell–Boltzmann distribution function as

^cosm u& 5 E
0

p

cosm u exp~mDE cos u/kBTa!

3 sin udu/E
0

p

exp~mDE cos u/kBTa!sin u du.

(17)

Although Eqs. (15)–(17) and Eq. (7) can be put into Eq. (6)
to solve for the soliton amplitude, the combined equation
is actually a highly nonlinear differential-integral equa-
tion that is too complicated to solve analytically. Never-
theless, for typical photorefractive guest–host polymers
with chromophore dipole moment mD , 10 D, under E
, 100 V/mm and Ta 5 300 K, we have mDE/kBTa
, 0.8. Thus the statistical average of each power of the
cosine function can be approximated22 by the first nonzero
term of their power series:

~^cos2 u&E 2 ^cos2 u&0! > ~2/45!~mDE/kBTa!2,

^cos3 u&E > ~mDE/kBTa!/5,

~^cos u&E 2 ^cos3 u&E/2! > ~mDE/kBTa!/15

> ^cos3 u&E/3.

Hence the index changes resulting from the dc field E
for x- and y-polarized light, respectively, are

D~n2!x 5 D~n2!x
BR 1 D~n2!x

EO > ~Cx
BR 1 Cx

EO!E2 > CxE2,
(18)

D~n2!y 5 D~n2!y
BR 1 D~n2!y

EO > ~Cy
BR 1 Cy

EO!E2

5 ~2Cx
BR/2 1 Cx

EO/3!E2 [ CyE2, (19)

where Cx
BR 5 (2/45)(4pNch)Da(mD /kBTa)2, Cx

EO 5 (1/5)
3 (4pNch)b333(mD /kBTa), Cy

BR 5 2Cx
BR/2, and Cy

EO

5 Cx
EO/3. For typical photorefractive polymers,

Cx 5 Cx
BR 1 Cx

EO is positive, but Cy 5 2Cx
BR/2 1 Cx

EO/3
may be positive or negative.20 The larger is the dc field
E, the more are the chromophores oriented in the x direc-
tion. This increases the refractive index for x-polarized
light and reduces the index for y-polarized light when
only birefringence is considered. Therefore the nonlin-
earity (Cx and Cy) owing to the orientationally enhanced
birefringence (Cx

BR and 2Cx
BR/2) is positive for x-polarized

light but negative for y-polarized light. However, it is
not so for the index change owing to the orientationally
enhanced electro-optic effect. This is because b333 is the
only dominant hyperpolarizability term22; its contribu-
tions to the index changes for x- and y-polarized light are
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both positive. As a result, the addition of the electro-
optic effect enhances the nonlinearity for x-polarized light
but reduces the nonlinearity or even reverses the sign for
y-polarized light.

C. Wave Equation for Soliton Envelope
Reduced from Eqs. (6), (7), (18), and (19), the soliton-
envelope equation then becomes

u9~j! 5 H G 2 k0
2x0

2Cx,yE`
2F u`

2 1 1

u2~j! 1 1
G 2/~m11 !J u~j!, (20)

with u`
2 5 u2(`) 5 I` /Ib . We choose the characteristic

length x0 5 1/(k0E`AuCx,yu) and simplify Eq. (20) to

u9~j! 5 H G 6 F u`
2 1 1

u2~j! 1 1
G 2/~m11 !J u~j!, (21)

where the plus (minus) sign corresponds to the negative
( positive) Cx,y value.

We may intuitively understand which sign in Eq. (21)
is necessary for forming bright or dark solitons. Let a
bright light beam propagate in the biased photorefractive
polymer, as shown in Fig. 1(a). The space-charge field in-
duced by the bright light beam then screens the uniform
(dotted line) external dc field, giving rise to the total dc
field E as shown in Fig. 1(c). As a result of nonuniform
chromophore–dipoles reorientation, the index-change
profile owing to this dc field is D(n2)x,y > Cx,yE2. If Cx,y
is positive, the index change is also positive. Thus the in-
dex profile has a local minimum at the beam center [Fig.
1(e)] that may defocus the light beam. On the other
hand, if Cx,y is negative, the index change is also nega-
tive. The resultant index profile [Fig. 1(f )] thus forms a
waveguide that may guide the bright light beam itself.
We thus conclude that negative Cx,y is a necessary condi-
tion for bright solitons to form regardless of the polariza-
tion of the light beam. Similarly, positive Cx,y is neces-
sary for dark solitons to form, as illustrated in Fig. 2.
Therefore from Eqs. (18) and (19) we know that if the ori-
entationally enhanced birefringence is the major effect,
then Cx > Cx

BR , Cy > 2Cx
BR/2, and dark (bright) solitons

are supported for the x( y) polarized light beam. Oppo-
sitely, if the electro-optic effect dominates, then Cx
> Cx

EO , Cy > Cx
EO/3, and only dark solitons, polarized in

either the x or the y direction, can be supported for Cx
EO

. 0. In one special case, Cy 5 0 5 2Cx
BR/2 1 Cx

EO/3,
the material becomes linear and cannot support any soli-
tons for the y-polarized light beam.

As we compare the polymeric solitons supported by the
orientationally enhanced birefringence plus the electro-
optic effect to the solitons21 supported solely by the orien-
tationally enhanced birefringence, the addition of the
electro-optic effect does not affect the dimensionless non-
linear soliton-envelope Eq. (21) but only modifies the non-
linear index-change coefficients Cx,y and rescales the
characteristic length x0 . The normalized soliton enve-
lopes and the soliton-existence curves therefore are kept
unchanged but with a new length unit. Nevertheless for
completeness and convenience we still present them here.
1. Bright Solitons
The boundary conditions of bright solitons are (i) u(0)
5 u0 , u8(0) 5 0, (ii) u(`) 5 u8(`) 5 u9(`) 5 0, and
(iii) u9(0)/u(0) , 0. With u` 5 u(`) 5 0, Eq. (21) be-
comes

u9 5 FG 1 S 1

u2 1 1 D 2/~m11 !Gu. (22)

Using quadrature and boundary condition (i), we obtain

@u8~j!#2 5 G@u2~j! 2 u0
2#

1
m 1 1

m 2 1
$@u2~j! 1 1#~m21!/~m11 !

2 @u0
2 1 1#~m21!/~m11 !% for m Þ 1,

@u8~j!#2 5 G@u2~j! 2 u0
2# 1 ln@u2~j! 1 1#

2 ln~u0
2 1 1 ! for m 5 1. (23)

Putting boundary conditions (ii) into Eq. (23), we obtain

G 5
m 1 1

m 2 1
@1 2 ~u0

2 1 1 !~m21!/~m11 !#/u0
2

for m Þ 1,

G 5 2ln~u0
2 1 1 !/u0

2 for m 5 1, (24)

where u0
2 5 u2(0) 5 I(0)/Ib is the soliton-intensity ratio.

The soliton profiles u(j) for various values of u0 and m
can be obtained easily by putting G into Eq. (22) and solv-
ing it numerically. Several examples are shown in Fig.

Fig. 4. Normalized soliton profiles u(j)/u0 of bright photore-
fractive polymeric optical spatial solitons, for several u0 values,
and for (a) m 5 2 and (b) m 5 3.
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4. The normalized soliton width Dj, defined as the full
width at half-maximum (FWHM) of the normalized soli-
ton intensity u2(j), can be evaluated by Dj 5 2*0

Dj/2dj

5 2*u0

u0 /A2du/u8, where u8 is obtained from Eq. (23):

u8 5 H G~u2 2 u0
2! 1

m 1 1

m 2 1
@~u2 1 1 !~m21!/~m11 !

2 ~u0
2 1 1 !~m21!/~m11 !#J 1/2

for m Þ 1,

u8 5 @G~u2 2 u0
2! 1 ln~u2 1 1 ! 2 ln~u0

2 1 1 !#1/2

for m 5 1. (25)

The normalized soliton widths Dj as a function of u0
(existence curves of solitons) for various m are given in
Fig. 5.

2. Dark Solitons
The boundary conditions for dark solitons are (i) u(`)
5 u` , u8(`) 5 u9(`) 5 0, (ii) u(0) 5 0, and (iii) u8(0) is

real and nonzero. Putting u9(`) 5 0 and u(0) 5 0 into
Eq. (21), we obtain G 5 1 for all cases, independent of m
and u` . This implies that all dark solitons in a photore-
fractive polymer propagate at one group velocity (deter-
mined solely by bare index perturbation) regardless of
their intensity ratio and quantum efficiency. Equation
(21) then becomes

u9 5 F1 2 S u`
2 1 1

u2 1 1
D 2/~m11 !Gu. (26)

The soliton profiles u(j) for various values of u` and m
can be solved numerically. In Fig. 6 we show several ex-
amples. Similarly, the normalized width Dj for dark soli-
tons can be evaluated as well by Dj 5 2*0

u` /A2du/u8,
where u8 is obtained from Eq. (26) by quadrature and
boundary condition (ii):

u8 5 H u2 2
m 1 1

m 2 1
~u`

2 1 1 !2/~m11 !

3 @~u2 1 1 !~m21!/~m11 ! 2 1# 1 @u8~0 !#2J 1/2

for m Þ 1,

Fig. 5. Normalized soliton widths Dj of bright photorefractive
polymeric optical spatial solitons, as a function of u0 , for several
m values.
u8 5 $u2 2 ~u`
2 1 1 !ln~u2 1 1 ! 1 @u8~0 !#2%1/2

for m 5 1. (27)

Substituting j → ` and u8(`) 5 0 into Eq. (27), we ob-
tain the first derivative function value of u at j 5 0:

@u8~0 !#2 5
m 1 1

m 2 1
~u`

2 1 1 !2/~m11 !

3 @~u`
2 1 1 !~m21!/~m11 ! 2 1# 2 u`

2

for m Þ 1,

@u8~0 !#2 5 ~u`
2 1 1 !ln~u`

2 1 1 ! 2 u`
2 for m 5 1.

(28)

Fig. 6. Normalized soliton profiles u(j)/u` of dark photorefrac-
tive polymeric optical spatial solitons, for several u` values, and
for (a) m 5 2 and (b) m 5 3.

Fig. 7. Normalized soliton widths Dj of dark photorefractive
polymeric optical spatial solitons, as a function of u` , for several
m values.
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Hence according to the results of Eqs. (27) and (28), we
find that the normalized soliton width Dj is explicitly a
function of u` , which is the square root of the intensity
ratio for dark solitons. The normalized soliton widths Dj
as a function of u` for various m are given in Fig. 7.

3. DISCUSSION
An effort to experimentally demonstrate photorefractive
polymeric optical spatial solitons is currently being car-
ried out in our laboratory. Although no conclusive result
is yet obtained, we would like to address several issues
about the formation conditions and characteristics of this
new type of optical spatial solitons.

A. Soliton Stability
Because the nonlinearity forms of polymeric solitons are
very similar to the form of screening solitons,
especially6,7,11,21 for m 5 0 and m 5 1, we do not analyze
the stability of polymeric solitons but only borrow the ex-
isting stability analysis results from the photorefractive
screening solitons and postulate that they have similar
stability properties. Nevertheless, it will be our interest
to investigate how the power dependence m of the quan-
tum efficiency f on the dc field E affects the stability of
optical spatial solitons in photorefractive polymer.

B. Material Stability
In order to support optical spatial solitons, the photore-
fractive polymer is doped with chromophores that have
sufficient permanent dipole moment and rotational mobil-
ity. The wavelength dependence of the photostability of
nonlinear optical chromophores should be surveyed for
deciding the soliton wavelength to prevent photochemical
reaction and photodamage of chromophore molecules.27

For popular chromophores the suitable wavelength is
roughly between 0.8 and 1.3 mm.

C. Voltage
Once we have launched a bright or dark optical beam
with known peak intensity, soliton width Dx, and back-
ground illumination Ib , we can find out the corresponding
normalized soliton width Dj from the soliton-existence
curves (Figs. 5 and 7) and evaluate the corresponding
field E` . For optical spatial solitons formed in bulk pho-
torefractive inorganic crystals,7 the required voltages are
usually estimated by V > E`l, where l is the crystal
thickness (electrode separation) because the soliton width
is much smaller than the crystal thickness. However,
the thickness of photorefractive polymer thin film is usu-
ally about tens to hundreds of micrometers, which is not
much larger than the soliton width. Hence the required
external dc bias voltage across the photorefractive poly-
mer thin film must be evaluated by integrating E
5 E`@(u`

2 1 1)/(u2 1 1)#1/(m11) across the actual poly-
mer thickness.

D. Soliton Size
The soliton size Dx is decided by the so-called intensity
ratio and its mapping on the soliton-existence curves
(Figs. 5 and 7), whose vertical axis is the normalized soli-
ton size Dj in the unit x0 5 1/(k0E`AuCx,yu). As a result,
the stronger the photorefractive polymeric optical nonlin-
earity, the smaller both the characteristic length x0 and
the obtainable minimum soliton size Dx 5 Djx0 . Using
the photorefractive polymer parameters14,28 m 5 2.0, nb
> 1.6, and Dnx > 1.3 3 1022 under external field E`

5 100 V/mm, with l0 5 700 nm, we obtain a minimum
soliton width Dx of less than 1.5 mm for dark solitons or 3
mm for bright solitons if the intensity ratio is adjusted to
correspond to the minimum normalized soliton width Dj.
Nevertheless, for solitons of this size, which approaches
the optical wavelength, the validity of the paraxial
approximation,29 the elimination of the nonlinear re-
sponse of the relative permittivity, «r , and the drop of the
diffusion and ]E/]x terms in Eqs. (1) and (4) need to be
reinvestigated.

E. Background Illumination
The desired polarization of the background illumination
is selected to meet the smallest electro-optic coefficient.
Nevertheless, in a photorefractive polymer, the launching
of the background illumination should be arranged differ-
ently than that of the photorefractive screening solitons.7

As shown in Figs. 1(a) and 2(a), the soliton light beam is
incident into the polymer thin film, propagates in the di-
rection perpendicular to that of the dc bias field, and is
polarized in the direction either parallel or perpendicular
to that of the dc bias field. If the uniform background il-
lumination copropagates with the soliton light beam and
is chosen to be linearly polarized in the direction perpen-
dicular to that of the soliton light beam (to avoid interfer-
ence effects), it still sees the soliton-induced refractive-
index waveguide or antiwaveguide and thus will focus or
defocus during the propagation in the polymer. As a re-
sult, the uniformity of the background illumination and
the constancy of the intensity ratio cannot be maintained.
The appropriate way to launch the background illumina-
tion therefore is to let it go vertically through the polymer
thin film from either side of the transparent indium tin
oxide electrodes, and to polarize it in the direction of the
soliton propagation. To keep the soliton-intensity ratio
constant in the polymer under this configuration, the
background illumination from either side of polymer thin
film must be suitably linearly attenuated along the propa-
gation of the soliton, for the sake of the absorption of the
soliton light beam.

F. Formation Time and Temperature
Right after turn-on of the external poling electric field,
the doped nonlinear optical chromophore dipoles begin
the rotational-diffusion process to reach the minimum
Helmholtz free-energy configuration. It is found that the
time constants associated with the molecular transient
reorientation process are not identical for the first- and
second-order optical processes.22 On the removal of the
dc poling field, the guest–host system undergoes another
diffusion process of molecular alignment to reach the
maximum-entropy state. In the formation process of
photorefractive polymeric solitons, the molecular dipoles
are originally poled by the external dc bias electric field.
After the optical beam is launched, it produces a local
space-charge field to screen the external poling field, and
the total electric field distribution creates a waveguide-
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like refractive-index profile to guide the optical beam by
the orientationally enhanced birefringence and the orien-
tationally enhanced electro-optic effect. Hence the tran-
sience of formation of solitons is strongly associated with
the light-induced turn-off behavior of the dc poling field in
the spatial region of the optical beam, which is governed
by charge generation, charge transport, and chromophore
reorientation.30 In the process of chromophore reorienta-
tion, the orientationally enhanced birefringent and
electro-optic effects are found to relax in time with differ-
ent decay time constants, 1/6D and 1/2D,22 respectively,
where D is the diffusion constant, so the first-order linear
optical process (birefringence) is dominant in the forma-
tion of solitons. However, it is also found that the chro-
mophore orientational response of only 490 ms does not
limit the index-grating formation with a fast time con-
stant of 4 ms in the four-wave-mixing experiments.30

That is to say, the reorientation of chromophore dipoles
subjected to the nonuniformly screened dc field is much
faster than the formation of the soliton-induced space-
charge field. Thus the photoinduced charge generation
and charge transport are the major processes that influ-
ence the transient photorefractive effect. The formation
time is therefore roughly inversely proportional to the lo-
cal optical intensity, as is the case in photorefractive in-
organic crystals.5,7 Although the reorientation of the
chromophore dipoles is a thermodynamic process that is
affected by temperature, by the above arguments we
know it has little to do with the formation time of the op-
tical spatial solitons in a photorefractive polymer. How-
ever, since the coefficients for index change, Cx,y

BR } 1/Ta
2

and Cx,y
EO } 1/Ta , at higher temperature, the required

voltage to form a soliton of fixed size is larger.

4. CONCLUSION
We have shown that photorefractive polymers doped with
nonlinear optical chromophores that have sufficient per-
manent dipole moment and rotational mobility may sup-
port optical spatial solitons. The waveguidelike
refractive-index profile comes from the orientationally en-
hanced birefringent and electro-optic effects of the chro-
mophore dipoles subjected to a screened dc electric field.
The formation conditions for these photorefractive poly-
meric optical spatial solitons and their characteristics are
discussed.

The sample preparation of photorefractive polymer and
the experimental observation of photorefractive polymeric
optical spatial solitons are being carried out at National
Taiwan University. We point out that the research of op-
tical spatial solitons in photorefractive polymer merits
further investigations, including the dynamical behavior
and stability of photorefractive polymeric solitons, im-
provement of chromophore structures and
characterization28,31,32 and their effects on generating op-
tical spatial solitons, and applications in integrated and
nonlinear optical devices.33

ACKNOWLEDGMENT
This research is supported by the National Science Coun-
cil, Taiwan, under contract NSC-89-2113-M-002-034.
The e-mail address for M.-F. Shih is
mfshih@phys.ntu.edu.tw.
REFERENCES AND NOTES
1. R. Y. Chiao, E. Garmire, and C. H. Townes, ‘‘Self-trapping

of optical beams,’’ Phys. Rev. Lett. 13, 479–482 (1964).
2. P. L. Kelley, ‘‘Self-focusing of optical beams,’’ Phys. Rev.

Lett. 15, 1005–1008 (1965).
3. V. E. Zakharov and A. M. Rubenchik, ‘‘Instability of

waveguides and solitons in nonlinear media,’’ Sov. Phys.
JETP 38, 494–500 (1974).

4. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, ‘‘Spatial
solitons in photorefractive media,’’ Phys. Rev. Lett. 68,
923–926 (1992).

5. M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A.
Yariv, ‘‘Steady-state spatial screening solitons in photore-
fractive materials with external applied field,’’ Phys. Rev.
Lett. 73, 3211–3214 (1994).

6. D. N. Christodoulides and M. Carvalho, ‘‘Bright, dark, and
gray spatial soliton states in photorefractive media,’’ J. Opt.
Soc. Am. B 12, 1628–1633 (1995).

7. M. Segev, M. Shih, and G. C. Valley, ‘‘Photorefractive
screening solitons of high and low intensity,’’ J. Opt. Soc.
Am. B 13, 706–718 (1996).

8. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fe-
jer, and M. C. Bashaw, ‘‘Dark and bright photovoltaic spa-
tial solitons,’’ Phys. Rev. A 50, R4457–R4460 (1994).

9. M. Taya, M. Bashaw, M. M. Fejer, M. Segev, and G. C. Val-
ley, ‘‘Observation of dark photovoltaic spatial solitons,’’
Phys. Rev. A 52, 3095–3100 (1995).

10. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M.
Fejer, ‘‘Photovoltaic spatial solitons,’’ J. Opt. Soc. Am. B 14,
1772–1781 (1997).

11. M. Segev and A. J. Agranat, ‘‘Spatial solitons in centrosym-
metric photorefractive media,’’ Opt. Lett. 22, 1299–1301
(1997).

12. M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss,
and G. Bryant, ‘‘Self-trapping of planar optical beams by
use of the photorefractive effect in InP:Fe,’’ Opt. Lett. 21,
1333–1335 (1996); ‘‘Self-trapping of two-dimensional opti-
cal beams and light-induced waveguiding in photorefractive
InP at telecommunication wavelengths,’’ Appl. Phys. Lett.
70, 2499–2501 (1997).

13. M. Segev and G. Stegeman, ‘‘Self-trapping of optical beams:
spatial solitons,’’ Phys. Today 51(8), 42–48 (1998), and ref-
erences therein.

14. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner,
‘‘Observation of the photorefractive effect in a polymer,’’
Phys. Rev. Lett. 66, 1846–1849 (1991).

15. C. Poga, P. Lundquist, V. Lee, R. Shelby, R. Twieg, and D.
Burland, ‘‘Polysiloxane-based photorefractive polymers for
digital holographic data storage,’’ Appl. Phys. Lett. 69,
1047–1049 (1996).

16. P. Günter and J.-P. Huignard, Photorefractive Materials
and Their Applications (Springer, Berlin, 1988 and 1989);
Vols. 1 and 2.

17. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and
N. Peyghambarian, ‘‘A photorefractive polymer with high
optical gain and diffraction efficiency near 100%,’’ Nature
(London) 371, 497–500 (1994); M. Liphardt, A. Goonesek-
era, B. Jones, S. Ducharme, J. Takacs, and L. Zhang,
‘‘High-performance photorefractive polymers,’’ Science 263,
367–369 (1994).

18. W. E. Moerner and S. M. Silence, ‘‘Polymeric photorefrac-
tive materials,’’ Chem. Rev. 94, 127–155 (1994).

19. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E.
Moerner, ‘‘High performance photorefractive polymer with
improved stability,’’ Appl. Phys. Lett. 70, 1515–1517
(1997).

20. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjork-
lund, ‘‘Orientationally enhanced photorefractive effect in
polymers,’’ J. Opt. Soc. Am. B 11, 320–330 (1994).

21. M. Shih and F. Sheu, ‘‘Photorefractive polymeric optical
spatial solitons,’’ Opt. Lett. 24, 1853–1855 (1999).

22. J. W. Wu, ‘‘Birefringent and electro-optic effects in poled
polymer films: steady-state and transient properties,’’ J.
Opt. Soc. Am. B 8, 142–152 (1991).

23. By J. X. Mack, L. B. Schein, and A. Peled, ‘‘Hole mobilities



Fang-Wen Sheu and Ming-Feng Shih Vol. 18, No. 6 /June 2001/J. Opt. Soc. Am. B 793
in hydrazone-polycarbonate dispersions,’’ Phys. Rev. B 39,
7500–7508 (1989), hole mobility m } exp@C(AE21)#,
where C is an experimentally determined constant.

24. By Onsager model [P. J. Melz, ‘‘Photogeneration in
trinitrofluorenone-poly(n-vinylcarbazole),’’ J. Chem. Phys.
57, 1694–1699 (1972)], quantum efficiency f } Em, for the
static dc field E between 10 and 100 V/mm, where m is a
material parameter ranging from less than 1.0 to greater
than 3.0.

25. Both approximations were justified physically6,19 in terms
of the inequality Ed ! E ! Eq , where Eq and Ed are the
limiting space-charge field and the diffusion field, respec-
tively, evaluated at the soliton width of no less than 5 mm.

26. ^cosm u& 5 *0
p cosm u exp(2U/ kBTa)sin u du/*0

pexp(2U /kB Ta)
3sinu du, where U 5 2mD • E0 2 p • E0/2 is the dipole in-
teraction energy, kB is the Boltzmann constant, and Ta is
the ambient temperature. We can safely neglect the in-
duced dipole energy, p • E0/2, since for typical photorefrac-
tive polymers22 with the orientational enhancement photo-
refractive effect, mD > 10 D and Da0 5 5 3 10223 cm3,
under the dc field E , 100 V/mm, the induced dipole en-
ergy is less than 1/60 of the total energy U. Thus
U > 2mD • E0 5 2mDE cos u.
27. A. Galvan-Gonzalez, M. Canva, G. Stegeman, R. Twieg, K.
-P. Chan, T. Kowalczyk, X. Zhang, and H. Lackritz, ‘‘Sys-
tematic behavior of electro-optic chromophore photostabil-
ity,’’ Opt. Lett. 25, 332–334 (2000).

28. C. Moylan, R. Wortmann, R. Twieg, and I. McComb, ‘‘Im-
proved characterization of chromophores for photorefrac-
tive applications,’’ J. Opt. Soc. Am. B 15, 929–932 (1998).

29. C. Chen and S. Chi, ‘‘Subwavelength spatial solitons of TE
mode,’’ Opt. Commun. 157, 170–172 (1998).

30. J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther,
S. Mery, B. Kippelen, and N. Peyghambarian, ‘‘Direct ob-
servation of orientation limit in a fast photorefractive poly-
mer composite,’’ Appl. Phys. Lett. 74, 2253–2255 (1999).

31. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue,
W. E. Moerner, and R. J. Twieg, ‘‘High-speed photorefrac-
tive polymer composites,’’ Appl. Phys. Lett. 73, 1490–1492
(1998).

32. K. S. West, D. P. West, M. D. Rahn, J. D. Shakos, F. A.
Wade, K. Khand, and T. A. King, ‘‘Photorefractive polymer
composite trapping properties and a link with chromophore
structure,’’ J. Appl. Phys. 84, 5893–5899 (1998).

33. K. D. Singer, J. E. Sohn, and S. J. Lalama, ‘‘Second har-
monic generation in poled polymer films,’’ Appl. Phys. Lett.
49, 248–250 (1986).


