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1. INTRODUCTION
During the past decade or so, dark optical solitons—both
temporal and spatial—have been the focus of considerable
attention.1 In the spatiotemporal domain, dark optical
solitons were first observed in low-loss optical fibers with
normal dispersion.2,3 Subsequently, dark spatial optical
solitons were experimentally demonstrated in self-
defocusing nonlinear media.4–8 In this latter case a dark
soliton or dark-soliton stripe (a dark notch or a void in in-
tensity) forms when the effect of diffraction is exactly bal-
anced by the self-defocusing nonlinearity of an optical me-
dium. Thus far several physical systems have been
identified as capable of supporting dark spatial solitons.
These include Kerr media such as liquids, gases, and
semiconductors as well as photorefractive crystals.4–14

The case of photorefractive solitons is of particular in-
terest, since a photorefractive crystal does not resemble a
Kerr material. In fact, photorefractive media are typi-
cally anisotropic, and their nonlinearity is nonlocal. Yet,
as has been suggested theoretically, both bright and dark
spatial solitons are possible in either biased photo-
refractives15–18 or in crystals with appreciable photovol-
taic coefficients.19–21 The existence of steady-state pho-
torefractive spatial solitons was successfully demon-
strated in a series of experimental studies.22 In
particular, dark spatial solitons in the form of dark
stripes or vortices have been observed in reverse-biased
0740-3224/2001/010055-09$15.00 ©
strontium barium niobate photorefractive crystals and
photovoltaic lithium niobate samples.9–14 In all of these
cases, the observation of dark solitons was possible at
relatively low power levels. Moreover, it was shown that
their soliton-induced waveguides are capable of guiding
other, more powerful beams at less-photosensitive
wavelengths.23

One of the most interesting features of a dark-soliton
beam is its ability to display a splitting behavior during
propagation.12,24–27 Depending on its input amplitude–
phase profile, a dark beam can split into a sequence of
dark or gray solitons. For example, under appropriate
initial conditions, a dark beam can generate an odd num-
ber of dark depressions, provided its phase has a p phase
jump at the input (odd phase profile),28–30 or it may ex-
hibit a more complicated splitting behavior in a general
case.31 When the phase jump is exactly p, the beam at
the center forms a dark (black) soliton, whereas the re-
maining depressions represent pairs of gray solitons trav-
eling in opposite directions. If, on the other hand, the in-
put phase is constant across the dark beam (even phase
profile), an even number of gray solitons emerge.27–29 In
this latter case pairs of gray solitons are generated and
travel in opposite transverse directions so as to conserve
the overall linear momentum of the system. This soliton
Y splitting process, which is unique to dark-soliton
beams, has been successfully used to write permanent
2001 Optical Society of America



56 J. Opt. Soc. Am. B/Vol. 18, No. 1 /January 2001 Grandpierre et al.
Y-junction waveguide structures (3 dB splitters) in the
bulk of a photorefractive crystal.32,33 Such Y junctions
can then be employed to guide signal (or probe) beams at
less-photosensitive wavelengths (;1.5 mm) and can be
permanently impressed or fixed into the crystalline lat-
tice. Clearly, an investigation of the properties of these
soliton-induced Y-junction photorefractive waveguides re-
quires an in-depth understanding of the underlying soli-
ton splitting dynamics. It is important to emphasize
that, even though gray solitons were previously consid-
ered within the context of saturable Kerr nonlinearities,4

the case of gray photorefractive solitons is by nature more
complicated and so far has remained unexplored. To be
more specific, dark beams in biased photorefractive crys-
tals are governed by a nonlinear Schrödinger equation of
the saturable type, which directly involves the boundary
conditions of the space-charge field through the so-called
(1 1 r) factor.16–18 This, in turn, has important implica-
tions for the properties or characteristics of these photo-
refractive gray-soliton states. In this paper we provide a
detailed analysis of gray spatial optical solitons in biased
photorefractive media. The properties of these gray-
soliton states, such as their transverse velocity, spatial
width, and phase profile, are obtained as functions of
their normalized intensity and their degree of grayness.
In a certain range of the soliton parameters we find that
the soliton total phase shift exceeds p, i.e., they become
‘‘darker than black.’’34 Moreover, by employing the sta-
bility criterion based on the renormalized momentum,35,36

we investigate the stability properties of gray photore-
fractive solitons. The Y soliton splitting arising from an
initially even field depression is also semianalytically de-
scribed by use of a Hamiltonian formalism and the asso-
ciated conserved quantities. This, in turn, allows one to
predict the Y-splitting angle and the grayness of the gen-
erated soliton pair once the parameters of the even field
depression have been specified.

2. PROBLEM FORMULATION:
DEFINITIONS
We start our analysis by considering a planar (stripe) op-
tical beam propagating in a photorefractive material
along the z axis. Being planar, the beam is allowed to
diffract only along the x direction. Without any loss of
generality, let us assume that the photorefractive crystal
considered here is strontium barium niobate (SBN), with
its optical c axis oriented along the x coordinate. The op-
tical beam is linearly polarized along x, and the external
bias field is applied in the same direction. Under these
conditions it can be directly shown that the slowly vary-
ing envelope f of the optical beam obeys the following
evolution equation16–18:
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where Esc is the space charge field induced in this photo-
refractive material, which under steady-state conditions
is given by
Esc 5 E0S I` 1 Id

I 1 Id
D . (2)

Here ne is the unperturbed extraordinary index of refrac-
tion, k0 5 2p/l0 , k 5 k0ne , and r33 is the electro-optic
coefficient involved. Other quantities are I 5 I(x, z),
the power density of the optical beam; Id , the dark irra-
diance of the crystal; and I` , the intensity of the wave
away from the dark notch of the wave, i.e., I` 5 I(x
→ 6`). E0 is the value of the space charge field at x
→ 6`. If the spatial extent of the optical beam’s dark
depression is much less than the x-width W of the photo-
refractive crystal, then E0 . 6V/W, where V is the exter-
nal bias voltage used. Corrections regarding this ap-
proximation (E0 . V/W) can be found in Appendix A.
We also point out that the dark irradiance of the crystal
Id can be artificially elevated by proper illumination of
the crystal as demonstrated in previous experimental
studies.12

It proves more convenient to normalize Eq. (1) by
adopting the following transformations and dimension-
less coordinates: f 5 (2h0Id /ne)

1/2U, j 5 k0ne
3r33uE0u

(z/2), and s 5 k0ne
2(r33uE0u/2)1/2x. In this case one ob-
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where r 5 I` /Id is the so-called intensity ratio of the
dark beam at x → 6` with respect to Id and j and s are
dimensionless coordinates. The envelope U has been
scaled with respect to the dark irradiance with h0 repre-
senting the free-space intrinsic impedance. It is impor-
tant to note that in the case of dark beams the boundary
conditions of the space-charge field are directly involved
in the evolution equation through the (1 1 r) factor. In
essence, the strength of the nonlinearity increases lin-
early with the dark intensity ratio r. In deriving Eq. (3)
we have also implicitly assumed that E0 is negative so
that dark solitons can be supported through the induced
self-defocusing nonlinearity.

Equation (3) can be further renormalized1 by use of the
following gauge transformation U 5 Cexp(ij), in which
case it takes the form:
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Note that in Eq. (4) the nonlinear term goes to zero at
s → 6` for optical beams of the dark type, since uCu2

→ r for s → 6`. It is straightforward to show that Eq.
(4) can also be obtained from the following Lagrangian
density:

L 5
i
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1 ~ uCu2 2 r! 1 ~1 1 r!lnF ~1 1 r!

1 1 uCu2G , (5)

where C* is the complex conjugate of C, Cj 5 ]C/]j, etc.
Similarly, this system can be described within a Hamil-
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tonian formalism. In this case, Eqs. (3) and (4) can be de-
rived from the Hamiltonian density:

Ĥ 5
1

2
uUsu2 1 ~1 1 r!lnF ~1 1 r!

1 1 uUu2G 1 ~ uUu2 2 r!, (6)

where in Eq. (6) we have used the fact that uCu2 5 uUu2

and uCsu 5 uUs u. One can also easily show that Eq. (3)
exhibits the following conservation laws:
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where N is related to the complementary power conveyed
by the optical beam, P is the so-called renormalized mo-
mentum of the system, and H is the renormalized Hamil-
tonian. All three quantities, N, P, and H are finite be-
cause of this renormalization procedure, and, of course,
they remain invariant during beam propagation. In
what follows, the gray soliton solutions of Eq. (3) will be
obtained.

3. PROPERTIES OF GRAY
PHOTOREFRACTIVE SOLITONS
Before considering the gray-soliton solution of Eq. (3), it is
useful to point out its Galilean invariance. In other
words, one can show that after introduction of the trans-
formation

U~s, j! 5 A~h,z!exp~iah!exp~ilz! (10)

in Eq. (3) and the moving coordinates h 5 s 2 vj, z
5 j, the new envelope A(h,z) satisfies the same evolu-
tion equation [that is Eq. (3) governing U],
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Equation (11) is true provided that the gauge parameters
a and l satisfy the conditions a 5 v and l 5 v2/2. In
this new moving-coordinate system v plays the role of a
normalized transverse soliton velocity. Because of this
one-to-one correspondence, any solution of Eq. (11) auto-
matically satisfies Eq. (3) and vice versa. It can be di-
rectly shown that the gray-soliton solutions of Eq. (11) are
given by17

A 5 r1/2y~h!expF imz 2 iJE
0

h dh8

y2~h8!
1 iF0G , (12)
where J is a constant, y(h) is a normalized function
(u y(h)u < 1), and F0 is an arbitrary phase. By imposing
the condition J 5 v, the solution for the U envelope now
reads as

U 5 r1/2y~h!expH iS m 1
v2

2
D z

1 ivFh 2 E
0
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y2~h8!
G 1 iF0J . (13)

The condition J 5 v was intentionally employed so as the
phase of this gray spatial soliton is constant when h or
s → 6`, which is consistent with the excitation condi-
tions right at the origin. The quantity (m 1 v2/2) in Eq.
(13) represents a nonlinear shift in the propagation con-
stant. By substituting Eq. (13) into Eq. (3) we find that
the normalized field profile y(h) satisfies the following or-
dinary differential equation:
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We now look for gray-soliton solutions by imposing the
boundary conditions, y(0) 5 Am and y(h) 5 1 at h
5 6`. The m parameter (0 , m , 1) describes the
soliton grayness, i.e., the intensity at the middle of the
wave defined as I(0) 5 mI` .

Equation (14) can be easily integrated once (by quadra-
ture), leading to

~ y8!2

2
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where y8 5 dy/dh and C is an integration constant. By
applying the boundary conditions at h → 6` and at h
5 0, one can determine the parameters m, v, and C.
With the conditions y 5 1 and y8 5 y9 5 0 at h → 6`,
and y2(0) 5 m, y8(0) 5 0, we get

C 5 2m 1
v2

2
1

~1 1 r!

r
ln~1 1 r!, (16)

C 5 2mm 1
v2

2m
1

~1 1 r!

r
ln~1 1 mr!, (17)

v 5 @2~1 2 m!#1/2, (18)

from which the parameter m can be determined, i.e.,
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1
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1
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Thus, given the grayness m of this gray spatial soliton as
well as its maximum intensity ratio r, one can then
uniquely determine the parameter m from Eq. (19) and, in
turn, its transverse velocity v from Eq. (18) and C from
either Eqs. (16) or (17). From here one can obtain the
normalized field profile y(h) by numerically integrating
Eq. (15).

Figure 1(a) shows the normalized intensity of a gray
photorefractive spatial optical soliton as a function of s for
different values of the grayness parameter m when r
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5 40. The associated soliton phase profiles are given in
Fig. 1(b) for the same range of parameters. It is obvious
from Fig. 1(a) that for a given intensity ratio the spatial
soliton becomes narrower as m decreases (i.e., as the soli-
ton becomes darker).

The normalized transverse velocity v is depicted in Fig.
2 as a function of r for various values of the grayness pa-
rameter m. As one can see, the normalized velocity v is
bounded between 0 and 1. One can easily show from Eq.
(19) that as r → 0, m → 1, and thus v → 0. On the other
hand, the same equation indicates that as r → ` and m
→ 1, the m parameter approaches 1/2, and therefore v
→ 1. Moreover, the normalized velocity quickly in-
creases in the neighborhood of r ' 0 and becomes almost
constant at higher values of r (r * 40). It is also inter-
esting to note from Eqs. (18) and (19) that the soliton
transverse velocity is approaching zero as m → 0. This
should have been anticipated, since this case corresponds
to the fundamental dark (black) spatial soliton, the veloc-
ity of which is zero.

The normalized FWHM of the gray-soliton beam Dh is
shown in Fig. 3, where Dh is defined as the spatial FWHM
between the background and the lowest value of the in-
tensity, i.e., the points where y2(h) 5 (1 1 m)/2. Figure
3 clearly indicates that the beam width generally de-
creases with the normalized intensity ratio r. At very
low values of r (i.e., in the Kerr limit), Dh decreases very
rapidly, whereas it saturates for r * 40. This saturation
is predominantly due to the fact that the evolution equa-

Fig. 1. (a) Normalized intensity profile of a gray photorefractive
soliton at r 5 40 and for various values of the grayness factor m;
(b) associated phase profile of these gray solitons.
tion itself involves the space-charge-field boundary condi-
tions through the (1 1 r) factor. In fact, had this effect
not been present, the FWHM curves would have behaved
similarly to those of bright photorefractive solitons.16–18

The beam width also increases with the degree of gray-
ness m.

As noted above, the antisymmetric (with respect to h)
phase profile of a gray photorefractive soliton is shown in
Fig. 1(b). Of interest is the soliton total phase jump, i.e.,
the phase difference between the two infinite tails of the
localized structure, shown in Fig. 4 for various values of
r,m. As follows from this figure, this phase difference
saturates at high values of r. Note that the phase jump
exceeds p for relatively low degrees of grayness (when the
soliton is close to being black). In essence, in this regime
(m & 0.2) these gray spatial solitons can be called
‘‘darker than black,’’ and similar results were previously
found in the case of gray solitons in other saturable Kerr
media.34

The angle u at which a spatial dark soliton propagates
with respect to the z axis is related to its transverse ve-
locity v and in radians is given by

Fig. 2. Transverse velocity v of a gray photorefractive soliton as
a function of r and m.

Fig. 3. Normalized FWHM of a gray photorefractive soliton as a
function of r and m.
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To illustrate our results, let us consider as a first ex-
ample a gray soliton of grayness m 5 0.1 and background
intensity ratio r 5 40. Let the SBN crystal be 4.5 mm
wide, r33 5 280 3 10212 m/V, ne 5 2.33, and let the ap-
plied voltage be 2200 V. The wavelength of the laser
beam is 488 nm. Under these conditions one finds from
Eq. (19) that m 5 0.84 and, from Eq. (18), v 5 0.56. The
FWHM of the soliton spatial width can be deduced from
Fig. 3 and in this case is Dh ' 1.6 or, in real units, 9.2

Fig. 4. Phase jump of a gray soliton as a function of r and m.

Fig. 5. (a) Normalized intensity and (b) phase profile of a gray
photorefractive soliton propagating in a SBN crystal when m
5 0.1 and r 5 40.
mm. The angle of propagation is calculated to be 3.24
mrad, and after 1 cm of propagation the gray notch of the
beam should be displaced by 32.4 mm. These analytical
results are in agreement with numerical simulations,
shown in Fig. 5(a), carried out by a beam propagation
method. Figure 5(b) depicts the phase profile at each dis-
tance, where for demonstration we removed the phase
term introduced by (m 1 v2/2)j.

4. SOLITON Y-SPLITTING PROCESS
As previously discussed, under reverse bias, the soliton
Y-splitting process can occur from an even field depres-
sion of a constant phase. Under appropriate initial con-
ditions, such depressions split into two symmetric gray
solitons, which propagate in opposite directions. In fact
this Y splitting has been observed experimentally.25,27

In what follows, we provide an approximate method that
can semianalytically predict the properties and character-
istics of the two gray photorefractive solitons generated
during this Y-splitting soliton process.

Our approach is based on the total Hamiltonian H of
the dynamical system defined by Eq. (9), which, as we
know, remains invariant during propagation. If we now
assume that the input is such that it eventually generates
only two gray solitons (with very little radiation, if any),
then the input Hamiltonian energy of the system will be
equally divided between these two symmetric states.
The reason we choose the Hamiltonian over the other two
conserved quantities P, N is because the evolution equa-
tion itself [i.e., Eq. (3)] can be variationally derived from
H. Therefore, to use this procedure, we must first find
the static Hamiltonian Hs of a gray photorefractive soli-
ton as a function of m, r. This Hamiltonian Hs can be
obtained by substitution of Eq. (13) into Eq. (9), in which
case one finds:

Hs 5 E
2`

`

dsH 2r~ y2 2 1 ! 1 2~1 1 r!lnF ~1 1 r!

1 1 ry2G J ,

(21)

where y(s) is the static field profile as obtained from Eq.
(14). As a result, the Hamiltonian Hs is expected to de-

Fig. 6. Soliton Hamiltonian Hs /r as a function of r and m.
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pend on both r,m. Figure 6 depicts the normalized
Hamiltonian Hs /r of a photorefractive soliton [defined
from Eq. (21)] as a function of both r and m.

Given an initially even field depression, one can obtain
the total Hamiltonian Hi right at the input through Eq.
(9). Since this Hamiltonian (or energy) of the system is
conserved during evolution and is expected to be equally
divided between the two gray photorefractive solitons,
one can then determine the Hamiltonian of each compo-
nent through Hs 5 Hi/2. Given the intensity ratio r in-
volved in this photorefractive interaction, and since we
now know Hs , the grayness m of each gray soliton can in
turn be determined from Fig. 6. From here the normal-
ized velocity v and the spatial FWHM Dh can then be es-
timated with the help of Figs. 2 and 3, respectively. Fi-
nally, the actual Y-splitting angle can then be computed
in radians through Eq. (20). Thus, given the initial field
depression, all the relevant parameters involved in this
Y-junction splitting process can be determined semiana-
lytically from Figs. 2, 3, and 6. Conversely, one can solve
the problem backwards. In other words, given the out-
put data (the two gray solitons), one can determine the in-
put depression and applied voltage required to lead to
this interaction.

In the examples to follow, we consider even field de-
pressions that are described by the analytical form
U(x, z 5 0) 5 r1/2@1 2 esech2(1.76x/x0)#1/2, where x0 is
the spatial FWHM of the input, e is associated with its
grayness, and r is again the background intensity ratio.
In all our examples, e 5 0.99; that is, the input depres-
sion is almost black.
As a first example, let us consider soliton Y splitting in
a SBN photorefractive crystal. The characteristics of the
crystal are the same as those given in Section 3. Again
l0 5 488 nm and the applied voltage is 2200 V. The pa-
rameters of the even field depression at the input are r
5 40 and x0 5 18 mm. From these input data and Eq.
(9) one finds that at z 5 0 the normalized input Hamil-
tonian associated with the system is Hi /r ' 4.054.
Since the intensity ratio remains unchanged during
propagation, the two gray solitons should also have r
5 40. Furthermore, by assuming that the input
‘‘energy’’ is equally divided between the two components,
the value of the Hamiltonian of each gray soliton is
Hs /r 5 Hi/2r ' 2.027. From Figs. 2, 3, and 6 one finds
that the soliton grayness m 5 0.11, the normalized veloc-
ity v 5 0.57, and the actual intensity FWHM is 9.2 mm.
From Eq. (20) the splitting angle is then found to be
u 5 3.3 mrad. We now check the accuracy of these semi-
analytical results by numerically solving Eq. (3) under
the same initial conditions. Figure 7(a) shows the optical
intensity during this Y-splitting process over a distance of
2.5 cm in this SBN crystal. The associated phase profile
of these two gray solitons is also shown in Fig. 7(b).
From these simulations we find that the intensity FWHM
of each gray soliton is 9.3 mm, m is 0.12, and the splitting
angle is asymptotically u ' 3.3 mrad. These results are
in excellent agreement with the predictions of our semi-
analytical approach.

As a second example, let us consider the same problem
(the parameters of the problem are identical to those in
the first example), but now the intensity FWHM of the in-
Fig. 7. (a) Normalized intensity and (b) corresponding phase profiles as obtained from numerical simulations of the soliton Y-splitting
for r 5 40 and when the spatial FWHM of the even field depression is x0 5 18 mm. (c) Intensity and (d) phase profiles during
Y-splitting in a SBN crystal when r 5 40 and the initial FWHM of the even field depression is x0 5 14 mm.
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put depression is 14 mm. In this case Hi /r 5 3.34. Fol-
lowing the same procedure as before, one finds that
Hs /r 5 Hi/2r ' 1.67 and hence m 5 0.22, v 5 0.7, and
u 5 4.1 mrad. The actual spatial FWHM of the two gray
solitons is also found to be 11.1 mm. Figures 7(c) and 7(d)
show the intensity and the phase profile, respectively, of
this interaction as obtained from numerical simulations.
From these numerical results we obtain m 5 0.25 and u
5 4.3 mrad, and the intensity FWHM of these states is
12 mm. Note that in this second example the error be-
tween the numerical and the semianalytical approaches
has somewhat increased. The reason for such a discrep-
ancy is related to the presence of radiative dispersive
waves generated during the soliton splitting, as is clearly
seen in Fig. 7(c). As a result, some part of the input
Hamiltonian goes into these radiation components, and
thus the condition Hs 5 Hi/2 is not exactly observed.

5. STABILITY OF GRAY
PHOTOREFRACTIVE SOLITONS
It has been analytically and numerically demonstrated
that dark or gray solitons described by the generalized
nonlinear Schrödinger equations can be unstable1,35,36

even though the nonlinearity is of the defocusing type.
In these studies the criterion for dark soliton stability was
found in terms of the derivative dP/dv, where P is the
renormalized soliton momentum defined in Eq. (8) and v
is the soliton normalized transverse velocity. More spe-
cifically, it was shown that when dP/dv , 0 a gray soli-
ton is stable, whereas in the opposite case it is
unstable.1,35,36 In this section, we will employ this ana-
lytical criterion to determine whether gray photorefrac-
tive screening solitons are stable.

By substituting Eq. (13) into Eq. (8), one can find the
renormalized momentum Ps for a gray photorefractive
soliton:

Ps~v ! 5 rvE
2`

`

dsFy~s ! 2
1

y~s !
G2

. (22)

It is evident from Eq. (22) that the renormalized momen-
tum is a function of both r and m. This dependence
comes from the product rv [through Eqs. (18) and (19)]
and from the normalized field profile y(s), which implic-
itly depends on this pair of variables [see Eq. (14)]. Fig-
ure 8(a) depicts the renormalized static momentum Ps /r
of these gray photorefractive solitons for various values of
the intensity ratio r and grayness m. On the other hand,
Fig. 8(b) shows the renormalized momentum Ps /r as a
function of velocity v for different values of r. As is clear
from Fig. 8(b), for r & 40 the derivative dPs /dv is always
negative. However, for larger values of r the curve Ps(v)
attains a maximum. Thus photorefractive dark solitons
for intensity ratios r > 40 exhibit unstable regions for
relatively small values of velocity v. In the unstable re-
gions the same (Ps , r) can correspond to different values
of v, which implies the existence of multivalued or multi-
stable solutions.35,36 It is interesting to note that in the
regime examined (0.01 & r & 1000) the grayness param-
eter m of these unstable solutions happens to be rather
small, i.e., they are almost black. For example, when r
5 40 and v 5 0.14, m 5 3.8 3 1023. On the other
hand, when r 5 100 and v 5 0.22, the grayness is m
5 8 3 1023.

Starting from Eq. (8), it is also straightforward to show
that in the region v → 0 (which corresponds to black soli-
tons) the curves Ps /r → p for all values of the saturation
parameter r.

This instability of gray photorefractive solitons is
rather surprising, especially if one considers the (1 1 r)
factor in Eq. (3), which tends to enhance the available
nonlinearity in the system.

6. CONCLUSIONS
We have provided a comprehensive theoretical study of
gray spatial optical solitons in biased photorefractive
crystals. The properties of these gray solitons, such as
their transverse velocity, spatial width, and phase profile,
have been obtained as functions of their normalized in-
tensity and degree of grayness. In a certain range of pa-
rameters, we have found that their total phase shift ex-
ceeds p, i.e., they become ‘‘darker than black’’ solitons.
Moreover, by employing the soliton stability criterion
based on the renormalized momentum, we have found
that these gray photorefractive spatial solitons can be un-
stable for r * 40. The soliton Y-splitting process arising
from an initially even field depression has been also semi-
analytically described by means of a Hamiltonian tech-
nique.

Fig. 8. (a) Renormalized momentum Ps /r of a dark or gray soli-
ton as a function of r and m, (b) Ps /r as a function of v for vari-
ous values of r.
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APPENDIX A
The approximation E0 5 V/W used in our analysis holds
when the crystal width W is much larger than the soliton
intensity FWHM. The correction factor f associated with
this expression can be found for gray spatial solitons by a
method similar to that used in Refs. 16 and 17. In this
case we write V 5 WuE0u 1 f(uE0u)1/2, from which one
finds that

uE0u 5 S 2f 1 Af 2 1 4WuVu

2W
D 2

. (A1)

It can then be shown that V and f are given by

uVu 5 2
uE0u

a
F E

0

ŝ~1 1 r!ds

~1 1 uUu2!
1 S aW

2
2 ŝ D G , (A2)

where

f 5 2
uE0u1/2

a
E

0

ŝF ~1 1 r!ds

~1 1 uUu2!
2 ŝG

5 2
uE0u1/2

a
E

Am

0.999F ~1 1 r!dy

~1 1 ry2!y8
2

dy

y8
G , (A3)

a 5 (k0
2ne

4r33uE0u/2)1/2, and ŝ is the half-spatial extent
of these solitary waves for which y2( ŝ) 5 0.999. The cor-
rection factor f can be further evaluated in terms of r and
m:

f 5
~2uE0u!1/2

a
E

Am

0.999

dyS 1 1 r

1 1 ry2
2 1 D

3 Fm~ y2 2 m ! 1 ~m 2 1 !S 1

y2
2

1

m D
1 S 1 1 r

r
D lnS 1 1 rm

1 1 ry2D G21/2

. (A4)

Figure 9 shows f (which is measured in units of
V1/2 m1/2) for various values of m and r, where the param-
eters used are identical to those employed to obtain Fig. 5,

Fig. 9. Correction factor f for gray photorefractive solitons as a
function of r and m.
i.e., uE0u 5 4.44 3 104 V/m, a 5 1.74 3 105 m21. This
correction factor is negligible when W is big enough, that
is, for f 2/(uVuW) ! 1 (Ref. 17), or f ! 1 V1/2 m1/2. This is
the case in the example depicted in Fig. 9.
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