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Spatial solitons in centrosymmetric photorefractive media
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We predict spatial solitons in photorefractive centrosymmetric media driven by the dc Kerr effect.  1997
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The richness of the nonlinear-optical effects in pho-
torefractive media has given rise to a great deal of new
soliton1 phenomena in these materials. Since the ini-
tial discovery of spatial solitons in photorefractive me-
dia,2 several distinctly different types of self-trapping
effects have been predicted and observed. Thus
far quasi-steady-state solitons,2,3 photovoltaic soli-
tons,4,5 screening solitons,6 – 10 resonant self-trapping in
photorefractive semiconductors,11 and self-trapping
of spatially incoherent beams12,13 and of incoherent
white-light beams have been investigated.14 In all
these studies the nonlinear change in the refractive
index resulted from the electro-optic (Pockels) effect
and, as such, can exist only in noncentrosymmetric
media. In general, however, the photorefractive effect
also exists in centrosymmetric media and is driven by
the dc Kerr effect.15,16 Here we predict spatial solitons
in photorefractive centrosymmetric media.

We start with the set of rate and continuity equations
and Gauss’s law, which describe the photorefractive
effect in a medium in which electrons are the only
charge carriers, plus the wave equation for the slowly
varying amplitude of the optical field. In steady state
and in two dimensions these equations are
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2ser 2 1d2Ê2 is the change
in the refractive index,15,16 assuming that the induced
dc polarization is in the linear region, i.e., P ­ e0ser 2

1dÊ. Note that Dn is now proportional to the space-
charge field squared sÊ2d rather than to Ê as for all
other photorefractive solitons driven by the Pockels
effect. The independent variables are z, the propa-
gation axis, and x, the transverse coordinate. The
dependent variables are as follows: n̂ is the electron
density, Nd

i is the density of ionized donors, Ĵ is
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the current density, Ê is the space-charge field in-
side the crystal, and A is the slowly varying am-
plitude of the optical f ield defined by Eoptsx, z, td ­
Asx, zdexpsikz 2 ivtd 1 c.c. sk ­ 2pnbyl, v is the fre-
quency, and nb is the unperturbed refractive index).
Relevant parameters of the crystal are as follows: Nd
is the total donor number density, NA is the density of
negatively charged acceptors, b is the dark generation
rate, s is the photoionization cross section, g is the re-
combination rate, m is the electron mobility, es ­ ere0 is
the low-frequency dielectric constant, geff is the effec-
tive quadratic electro-optic coeff icient, and V is the ex-
ternal voltage applied to the crystal between electrodes
separated by distance l; 2q is the electron charge, kB
is Boltzmann’s constant, and T is the temperature.
Finally, we define the optical and the background in-
tensities as I ­ jAj2 and Ib, respectively, and the dark
irradiance, Idark, as bys. Note that Idark is very small
compared with I and Ib, which are typically used in
most photorefractive materials.8,10

We seek solutions of the form

Asx, zd ­ usxdexpsiGzd sIdark 1 Ibd1/2, (6)

where G is the soliton propagation constant. Here we
discuss bright and dark solitons only; thus we limit
our analysis to real usxd. Since I ­ jAj2 depends on
x alone, we look for solutions in which n̂, Nd

i, Ĵ, and Ê
depend solely on x and the only component of Ê and Ĵ
is in the x direction.

We transform the equations to dimensionless form
by the substitutions n ­ n̂yNd, r ­ NdyNA, N ­
Nd

iyNd, E ­ jÊjysV yl d, J ­ jĴjysqmNdVyl d, and
j ­ xyd; d ­ s62kbd21/2 is the characteristic length
scale and b ­ skynbd f1y2nb

3geffe0
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skynbdDn0 is the parameter that characterizes the
strength and the sign of the optical nonlinearity.
Notice that d ­ lyf2ps62Dn0nbd1/2g, where Dn0 is the
change in the refractive index driven by the dc Kerr
effect in the absence of light at a uniform external
field Vyl. We solve for a scalar case that occurs, for
example, in KLTN when x is parallel to the direction
of the applied field.15,16 The sign of geff determines
the sign (positive or negative) of Dn0. We therefore
introduce the dual-sign s6d notation in the definition of
d, where the upper (lower) sign applies to the positive
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(negative) value of b (and, consequently, of Dn0). The
dimensionless equations are
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where d ­ Gyb and, unlike in the case of Ref. 8,
Eq. (11) now depends on E2. The prime and double
prime stand for the derivatives with respect to j,
a ­ ssIdark 1 IbdysgNdd, e1 ­ kBTlysqdV d, and e2 ­
Vesys lqdNdd. For typical parameters of KLTN sl ø
0.5 mm, nb ø 2.2, es ø 4000 e0, Vyl ­ 2 kVycm,
Nd ø 1018 cm23, r ø 20), we obtain Dn0 ø 5 3 1024

(which can trap a 10-mm soliton8,10), d ø 1.7 mm,
e1 ø 0.074, and e2 ø 0.013. In addition, with optical
intensities of ø1 Wycm2, n is of the order of 1029.
Note that es depends on the temperature T via the
Curie–Weiss law and can be safely set between 3000
and 10,000, as long as the operation point is far enough
from the phase transition.

In view of these estimated values, n and e2E 0 can be
neglected in Eq. (9); thus N ­ 1yr, which is a constant
(as for screening solitons) as long as E 0 is much smaller
than sre2d21 ø 4. With this constant in Eq. (7) leads to
n > ars1 1 u2d, since N ,, 1. Similarly, in Eq. (8) one
can neglect e1 n0 with respect to nE, as long as je1n0j ,,

1. One can easily justify both of these approximations
a posteriori after solving for u and E (in fact, this
has been shown for screening solitons and strontium
barium niobate parameters in Ref. 7). Substituting n
in Eq. (8) leads to E ­ Jyfars1 1 u2dg, which, after
substitution of E into Eq. (10) gives

E ­ 2hys1 1 u2d , (12)

with h ­ fsdyld
Rl/2d

2l/2d djys1 1 u2dg21. It remains now
to evaluate constant h (which is proportional to the
constant current J ). This constant can be evaluated
with high accuracy by use of the procedure described
in the appendix of Ref. 8. Here we choose to evaluate
this constant by use of a simpler method: assuming
a square-wave structure for the optical beam. For
bright solitons we assume a square wave of intensity
u0

2 and width Dx (in dimensional units), and for
dark solitons we assume a square notch of width
Dx in a uniform beam of intensity u`

2. Performing
the appropriate integration yields h > 1 for bright
solitons as long as Dxyl ,, 1 and h > 1 1 u`

2 as
long as 1 1 u`

2 ,, lyx. Typically, l ø 5 mm, and
the soliton width, Dx, is roughly 10 mm. This means
that the approximate value of h ­ 1 for bright solitons
is always valid, whereas for dark solitons h ­ 1 1
u`

2 holds for 1 1 u`
2 ,, 2500 only. Note that our

results imply Dn that is proportional to the screening
field squared [and thus to sVyl d2], as opposed to
Dn used for two-wave-mixing that is proportional
to the product of the unscreened field Vyl and the
diffusion f ield.15,16 Here the diffusion field plays only
a secondary role (being the f irst-order correction) and,
as with screening solitons, we expect it to give rise to
self-bending.7

We now substitute E into the normalized wave equa-
tion and obtain

u00 ­ 6fd 2 h2ys1 1 u2d2gu , (13)

which can be integrated by quadrature and yields
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with psjd ­ u0, p0 ­ ps0d and u0 ­ us0d.
Fundamental bright solitons are found under the

conditions6,8 (i) us`d ­ u0s`d ­ u00s`d ­ 0, (ii) p0 ­ 0,
and (iii) u00s0dyu0 , 0. Substituting j ! ` and using
conditions (i) and (ii) in Eq. (14) yields d ­ 1ys1 1 u0

2d,
which also implies that 0 , d , 1 for all nonzero u0.
Using this result in Eq. (13) and applying condition
(iii) implies that only the lower sign can give bright
solitons. This means that, similar to screening soli-
tons,6,8 bright solitons in centrosymmetric photorefrac-
tive media also require Dn0 , 0 (everywhere) and can
be viewed intuitively by Fig. 1 of Ref. 8. To summa-
rize, bright solitons are solutions of

u00 ­ 2

∑
1

1 1 u0
2 2

1
s1 1 u2d2

∏
u , (15)

with us0d ­ u0 and u0s0d ­ 0. We integrate Eq. (15)
numerically and obtain the soliton waveforms that are
qualitatively similar to those of screening solitons.6 – 8

Note that, for u0 ,, 1, both solitons are in the Kerr
limit and attain a hyperbolic secant form. We obtain
the soliton existence curve that relates the soliton in-
tensity FWHM width Dj to u0 and show it as the
solid curve in Fig. 1, in which we also show the exis-
tence curve of conventional screening solitons (dashed
curve). The minimum of each curve is different and is
obtained for u0 > 1.06 (which gives Dj > 3.34) for the
present case. The stronger saturation in the present
case is apparent from Fig. 1: it is manifested in the
faster increase in Dj for u0 values that are larger than
the minimum.

Fundamental dark solitons are found under the con-
ditions6,8 (i) u0s`d ­ u00s`d ­ 0, (ii) u0 ­ 0, and (iii) p0

Fig. 1. Existence curves of bright solitons in photorefrac-
tive centrosymmetric media (solid curve) and of screen-
ing solitons in photorefractive noncentrosymmetric crystals
(dashed curve).
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Fig. 2. Existence curves of dark solitons in photorefractive
centrosymmetric media (solid curve) and of screening
solitons in photorefractive noncentrosymmetric crystals
(dashed curve).

must be real. Substituting j ! ` and condition (i) into
Eq. (13) leads to d ­ 1 for all dark solitons. Thus, all
the dark solitons propagate with a phase velocity iden-
tical to the light speed in the biased bulk outside the
dark notch. Substituting now j ! `, d ­ 1, and con-
ditions (i) and (ii) into Eq. (14) leads to p0

2 ­ 6u`
4.

Condition (iii) implies that only the upper sign gives
dark solitons. Similar to screening solitons,6,8 dark
solitons in centrosymmetric photorefractive media re-
quire that Dn0 . 0 and can be explained intuitively by
Fig. 4 in Ref. 8. To summarize, dark solitons are so-
lutions of

u00 ­ h1 2 fs1 1 u`
2dys1 1 u2dg2ju , (16)

with us0d ­ 0 and u0s0d ­ u`
2. We integrate Eq. (16)

numerically and obtain the waveforms and the exis-
tence curve for dark solitons. In Fig. 2 we show the
existence curve of dark solitons in centrosymmetric
media (solid curve) and, for comparison, the existence
curve of dark screening solitons (dashed curve). The
curves have a similar trend, but the faster saturation
of the present case reduces the asymptotic minimum at
large u` values to Dj > 0.7, which implies that the Dn0
required for dark solitons in centrosymmetric media is
reduced by roughly a factor of 4 compared with Dn0 for
dark screening solitons.

Several issues now merit discussion. First, soli-
tons that result from Dn ~ 1ys1 1 jAj2d2 have been
studied theoretically,17,18 and several intriguing predic-
tions have been made, including stability with respect
to small perturbations17; bistability,17,19 which in the
present case exists for bright solitons only (as is ap-
parent from Fig. 1, solitons of the same width Dj are
found for two different values of u0); and drift insta-
bility of dark solitons.18 To our knowledge, no other
physical system that exhibits this form of nonlinearity
has been found. We expect that solitons in photore-
fractive centrosymmetric media will be good candidates
for study of soliton properties in highly saturated non-
linearities, including collisions and other interactions.
Second, as shown in Figs. 1 and 2, these new solitons
require a smaller nonlinearity than screening solitons
for support of a soliton of the same width and wave-
length. Furthermore, the maximum attainable Dn0 in
these materials is very large,15,16 and the space-charge
field can be impressed (fixed) into the crystalline lat-
tice. This means that one should be able to utilize
the solitons to induce waveguides in these crystals
and transform them into permanent waveguides with a
highly controllable shape (tapered waveguides, Y junc-
tions, etc.). The high saturation should also support
stable two-dimensional self-trapping, as observed with
screening solitons10 and give rise to two-dimensional
soliton-induced waveguides.

In conclusion, we have shown that centrosymmetric
photorefractive media should support spatial solitons.
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